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WEIGHTED-RESIDUAL METHODS IN 
SPACE-DEPENDENT REACTOR DYNAMICS 

by 

Edward L. Fuller III 

ABSTRACT 

This work is a study of approximate methods for the solution of 
problems in space-dependent nuclear- reactor dynamics. It is shown that 
these approximate methods can all be thought of as applications of the 
method of weighted residuals . In each method, a t r ia l solution is fornned 
for the neutron flux. The tr ial solutions are expansions in known spatially 
dependent functions called tr ial functions. Each approximate method differs 
from the others in the manner in which its trial functions a re chosen. The 
undetermined time-dependent functions, called amplitude functions, are then 
found by using the weighted-residual procedure known as the method of un
determined functions to derive the so-called multimode kinetics equations, 
which are f i r s t -order , ordinary differential equations in time. The mult i-
mode kinetics equations are then integrated using the method of undetermined 
pa rame te r s . 

An iterative method, which uses the method of undetermined func
tions for both spatial and temporal integrations, is described. It eliminates 
the need for choosing accurate tr ial functions because it finds a solution 
which is independent of the initial choice of trial functions. A simple ex
ample is solved to i l lustrate the method. Several possible applications of 
the method are indicated. 

Some numerical results are reported for continuous-synthesis and 
multichannel-synthesis approxinnations. Several choices of weighting func
tions a re compared. Conclusions a re drawn regarding the roles of the t r ia l 
functions and the weighting functions in obtaining accurate solutions. 

CHAPTER I 

INTRODUCTION 

A. Dynamic Problems in Nuclear Reactors 

In the analysis and design of large nuclear power reac tors , knowl
edge of the spatial and temporal behavior of the neutron flux is essential . 
Localized changes in mater ia l compositions, such as control-rod withdrawals, 
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cause changes in the neutron-flux shape which contribute to changes m the 
power level. For this reason, the traditional point-reactor model does not 
adequately describe the transient behavior of either large fast or thermal 
reac tors . 

At least four areas of transient analysis can be distinguished. They 
are reactor safety studies, analysis for design and routine operation, anal
ysis of xenon oscillations in thermal reactors , and fuel-cycles studies. 
Each problem area differs from the others in that each has widely different 
character is t ic transient t imes, which range from milliseconds m severe 
accident-induced transients to months in a fuel-management p rogram. 

Safety studies are directed toward investigating t ransients initiated 
by changes in mater ia l composition. Knowledge of the response of a reac
tor to a wide variety of changes can improve the safety of the reactor . 
Since accidents cannot be predicted beforehand, the prevailing philosophy 
of reactor safety is to imagine possible severe accidents, analyze them, 
and design to prevent them as far as possible. Some effects of serious acci
dents are fuel-element rupture, loss of coolant flow, and core meltdown. If 
the space-time behavior of the neutron flux is calculated accurately when 
analyzing possible accidents, the effects mentioned above could be prevented 
by designing the reactor properly. Accident analysis is emphasized in the 
numerical examples of Chapter VIII. 

An operating power reactor must routinely satisfy demands for 
power increases . The power level is adjusted by moving control rods with
in the reactor . The control-rod movements, which take place over a period 
of minutes, cause the flux shape to change as the power level changes. The 
relationships between a control-rod movement and the corresponding flux 
shape and power-level changes must be properly accounted for in the reac
tor design. 

Xenon oscillations in therinal reac tors generally occur with char
acteris t ic periods of hours or days. A flux increase in a localized region 
of a large thermal reactor causes the concentration of the poison Xe to 
increase in that region. As the xenon concentration builds up, the neutron 
flux decreases in the region relat ive to the flux in adjacent regions. Since 
the total power demanded from the reactor remains the same, the flux in 
the adjacent regions increases still further to meet the demand. The xenon 
concentration in these regions now increases while decreasing in the origi
nal region of increase . The xenon concentration thus has a character is t ic 
period of oscillation. Since the oscillation could be unstable, it should be 
controlled. 

Fuel burnup is usually allowed to take place for many days before 
replacement or rear rangement . In planning an optimum fuel management 
program, one should know the spatial effects of fuel burnup. 
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Each of the four c lasses of problems described above can be solved 
using the space-energy-t ime-dependent neutron t ransport equation and the 
balance equations for the delayed-neutron p recu r so r s . In pract ice, though, 
one of the approximations to the t ransport equation is used, such as multi-
group diffusion theory. In addition, each type of space-t ime problem has its 
own character is t ic "feedback" effects. An accident could be initiated by 
sodium voiding in a fast reactor, and then limited by Doppler feedback, which 
is a nonlinear phenomenon. A xenon oscillation problem uses a balance 
equation for the xenon concentration. Isotope balance equations a re needed 
in fuel-burnup studies. 

The time scales for each problem type are so vastly different that 
they can be considered independently from one another. The methods that 
will be subsequently discussed are applicable to each type of problem, 
although the focus on detail differs from one application to the next. For 
example, delayed neutrons are neglected in a fuel-cycles study. Conversely, 
changes in isotope concentrations a re neglected in safety studies. 

B. The Time-dependent Multigroup Diffusion Equations 

In Section A above, it was noted that the time-dependent multigroup 
diffusion-theory approximation is often used to solve the space-t ime prob
lem. In this approximation, the energy variable is discretized into G d is 
tinct energy groups, and the resulting system of equations is then written 
in the compact form' 

V - ' | ^ ( r , t) = [V • DV- A + ( l - p ) x F^] 0(7, t) + Z X.X.r).(r,t); (1.1) 
ot P • j - l J J J 

Sri. ^ 
- ^ ( r , t ) = p . F ' 0 ( r , t ) - X.Ti.(r , t) . -T.^,:r (1.2) 

In Eqs. 1.1 and 1.2, the group fluxes a re represented by the column vector 

i,(r,t) 

(1.3) 0(r. t) = 

*G(r, t ) 

the p recursor concentrations by the functions T].(r, t), j = 1, 
neutron speeds by the diagonal matr ix 

..., J, and the 
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(1.4) 

The m a c r o s c o p i c diffusion coeff ic ients a r e r e p r e s e n t e d by the d i a g o n a l 

m a t r i x 

D 

D, 

(1.5) 

the m a c r o s c o p i c a b s o r p t i o n and s c a t t e r i n g c r o s s s e c t i o n s a p p e a r in the 
G x G m a t r i x 

2 i i 

• ' G l • • 'GG 

( 1 . 6 ) 

T h e f i s s i o n c r o s s s e c t i o n s a p p e a r i n t h e c o l u m n m a t r i x 

F = 

VZr 

vZ fG 

( 1 . 7 ) 

T 
F i s t h e t r a n s p o s e of F a n d i s t h u s a r o w m a t r i x . 

T o a r e a s o n a b l e a p p r o x i m a t i o n , t h e e m i s s i o n s p e c t r u m of p r o m p t 

n e u t r o n s i s r e p r e s e n t e d b y t h e c o l u m n m a t r i x 

-'(^pi 

( 1 . 8 ) 

XpG 



the emission spectra of the delayed neutrons are given by 

'Xii~ 

. j = 1 J. 

XjG 

(1.9) 

The p recursor decay constants and the delayed-neutron fractions are X: 

and p., j = 1, J, respectively; the total delayed-neutron fraction is 

J 
.1 (1.10) 

The system of equations represented by Eqs. 1.1 and 1.2 is generally 
far too complicated to solve without resort ing to numerical and/or approxi
mation techniques. In fact, even a direct numerical solution on a high-speed 
computer is impractical if more than one space dimension and/or more than 
a few energy groups a re used. The only hope in obtaining solutions to the 
full space-energy-t ime-dependent problem seems to lie in the development 
of good approximation techniques. Some of these attempts will be described 
next. 

C. Approximate Methods for the Space-Time Problem 

The numerical methods, such as finite-difference methods, have 
traditionally been poor choices for reactor 'dynamics . The V"' matrix, 
which multiplies the time derivative of the flux column vector, contains 
elements that a re very small . Because of this, very small time steps must 
be taken to ensure a stable solution. Computation becomes very t ime-
consuming, even for relatively simple cases . ' Consequently, more economical 
approximate methods have been developed, which have varying degrees of 
accuracy. 

The improved temporal integration techniques can be divided into 
two classes: those that minimize the finite-difference t ime-s tep limitation, 
and those that overcome it. Examples of the former are the so-called 
Theta-difference method of Henry and Vota'* and the "Streak" method of 
Snniley.^ Examples of methods that overcome the t ime-s tep limitation are 
the exponential matr ix approximations of Porsching, Hansen's la rges t -
eigenvalue method, '" ' Adler 's method, ' and the methods belonging to the 
la rger class known as the method of undetermined pa ramete r s , such as that 
developed by Brittan and innproved upon by Kaganove. The method of un
determined pa ramete r s , being a weighted-residual method, is explored 
thoroughly in this report . One essential feature common to all the methods 
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that overcome the t ime-step limitation is that the equations are formally 
integrated with respect to the time variable. '^ Then, slowly varying t e rms 
of the integrands are approximated by t r ia l solutions. The methods that 
overcome the finite-difference t ime-step limitation are discussed further 
in Chapter VI. 

In addition to the development of improved techniques for carrying 
out the temporal integrations, approximations for treating the spatial va r i 
ation of the flux have been propounded. These include the traditional pomt-
reactor model,'^ in which the flux shape is assumed to remain constant 
throughout a transient, the adiabatic method'* and its more sophisticated 
cousin, the quasistatic method,'^ the nodal methods,'*' and the modal expan
sion m e t h o d s . ' ' - " These methods are all closely related, as will be shown 
in Chapters III, IV, and V. They all can be thought of as applications of the 
method of weighted residuals'^" to the time-dependent diffusion equations. 

In the weighted-residual procedure, the flux is expanded into a lin
ear combination of known spatially dependent functions called t r ia l functions. 
The approximate solution is then inserted into Eqs. 1.1 and 1.2. The resul t
ing "residual" is then multiplied by appropriate weighting functions, and 
spatial integrations are carr ied out to determine the time-dependent func
tions. The method of weighted residuals is described in detail in Chapter II. 

The unification of the various methods that t reat the spatial depen
dence of the flux during a transient will not be made merely for pedantic 
reasons. Reactor physicists have a genuine need to known which approxi
mations are suitable for part icular problems. Unifying the methods enables 
the strengths and weaknesses of each to be assessed in a systematic man
ner. Therefore, a major goal of this report is to show as precisely as 
possible the s imilar i t ies and differences among these weighted-residual 
methods. The methods differ in principle from one another only in the 
choices of the t r ia l solutions. 

Each method reflects, to a greater or l e s se r extent, all the funda
mental advantages and limitations of trial-function methods. The methods 
all attempt to use resul ts previously found, i.e., the t r ia l functions, to p re 
dict the solution to the problems to which they are applied. Their success 
depends largely upon how carefully the tr ial functions are chosen. Exper i 
ence and intuition are important factors in this respect . Fur thermore , 
great care must be taken to ensure that the intuitive knowledge is applied 
only within the parameter range where it is valid. As of now, even the se
lection of this parameter range is largely intuitive. Therefore, al ternative 
methods of solving the problems must remain available for checking pur
poses. Direct numerical solutions, inefficient and time-consuming as they 
may be, should provide this al ternative. 



Another goal of this report is to compare different types of weighted-
residual c r i te r ia in an attempt to determine the influence of the weighting 
functions on the success of the approximations. Previous investigators^""^^ 
of weighted-residual nnethods have assigned far more importance to the 
choice of the t r ia l functions than to the choice of weighting functions. 
However, the influence of weighting functions on the accuracy of the approxi
mate space- t ime solutions remains to be seen. 

Chapter II contains an outline of the method of weighted residuals . 
Chapter III contains a derivation of the multimode kinetics equations^''^* 
using the method of weighted residuals . The multimode kinetics equations 
a re the set of f i r s t -order ordinary differential equations connmon to all the 
approximate methods listed above. The point-reactor model and spatially 
continuous nnodal-expansion methods a re also discussed in Chapter III as 
weighted-residual methods. The adjoint problem^*'^ and the correspond
ing variational formulation are presented at the close of Chapter III. 

Chapter IV is concerned with the possibilities for choosing spatially 
discontinuous tr ial functions.^ '̂  A technique known as multichannel syn
thesis^' is described, as are the nodal methods. Temporally discontinuous 
tr ial functions^'' '" are discussed in Chapter V as choices to improve accu
racy. The adiabatic and quasistatic methods are examples of this technique. 

In Chapter VI, the multimode kinetics equations are integrated using 
the method of undetermined parameters .^" Piecewise polynominal func
tions are chosen as tr ial solutions. Possible choices of weighting func
tions are also presented. An iterative scheme,'^ which uses the method of 
weighted residuals, is applied to the space-t ime problem in Chapter VII. 
A simple illustration is made, and indications are given as to how it can be 
used with multichannel synthesis and temporally discontinuous synthesis. 

Chapter VIII contains the resul ts of some numerical studies along 
with interpretations of them. Emphasis is placed upon the choice of 
weighting functions when continuous trial functions are used. Also, nodal 
methods and multichannel synthesis are studied One-group diffusion theory 
is used in all cases . Exact solutions a re obtained with the computer pro
gram WIGLE.^ 

Conclusions and recommendations for further study are made in 
Chapter IX. Linear dependence is discussed in Appendix A. Appendix B 
contains a description of the t ime-s tep halving procedure used to obtain 
stable solutions of the multimode kinetics equations. 
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CHAPTER II 

THE METHOD OF WEIGHTED RESIDUALS 

A. General Discussion 

The method of weighted residuals is an appealing mathematical tool, 
because of both its wide utility and its ease in formulation. It not only 
handles the usual linear self-adjoint problems, but can also solve even the 
most highly nonlinear and non-self-adjoint sys tems. The resulting approxi
mate solutions are more or less "good," depending upon the experience 
and/or intuition of the human being using the method; this somewhat vague 
statement will be made clearer below. 

Consider a system of (generally) nonlinear par t ia l differential 
equations in several independent variables , represented by the vector x. 
This system of equations is ' ' 

H0(x) = f(x), (2.1) 

and 

Bi0(x) = g.(x), i = 1, ,.., p, (2.2) 

where H(0) is a nonlinear differential operator , 0(x) is the vector of de
pendent variables, f(x) and gi(j£) are vectors containing functions of the 
independent variables , and the Bj are operators representing the boundary 
conditions. 

The system of equations represented by Eqs . 2.1 and 2.2 usually is 
solved either numerically or approximately. To apply the method of weighted 
residuals , an approximate solution is f irst sought in the form 

0(x) = ^0 + Z Aj^ j . (2.3) 

The functions TJJQ and ^j are t r ia l solutions, chosen beforehand. In principle, 
these functions a re a rb i t r a ry , but great care must be taken to ensure that 
they are all linearly independent. They should also satisfy the boundary con
ditions given by Eq. 2.2, preferably by choosing ifio and ^j such that 

Bi(^„) = g^, i = 1, .. 

and 

'. j = 1 n. J 

(2 .4 ) 

B^(^.) = 0, 

More will be said about boundary conditions in Section C of this chapter. 



The tr ial functions in Eq. 2.3 a re generally functions of all or all 
but one of the independent var iables . The A; a re either undetermined 
paramete rs or undetermined functions of one or more of the independent va r i 
ables. Once determined, the A;'s will in turn provide an approximate 
solution to Eqs. 2.1 and 2.2. 

Since Eq. 2.3 is an approximation, it generally does not satisfy 
Eq. 2.1. A measure of the extent to which 0 satisfies Eq. 2.1 is given by 
the equation residual R(A,V), which is formed when Eq. 2.3 is substituted 
into Eq. 2.1: 

R(A.T(/) = f - H0 = f - H | V O + Z AjVj) • (2-5) 

As the number of approximating functions increases , the residuals 
decrease if the trial functions are "reasonable." If the residual is identi
cally zero , the exact solution is one of the trial functions. If the residual 
does not vanish, a reasonable alternative is to make it small in some sense. 
The weighted-residual method provides this al ternative. That is , n weighted 
averages of the residual are set equal to zero: 

W^R dD = 0, k = 1 n. (2.6) 

The independent variables in D include all the independent variables upon 
which the A; do not depend. 

If the Aj are undetermined pa ramete r s , n algebraic equations r e 
sult, which may be solved for the A;. When the A- are undetermined func
tions, Eq. 2.6 yields n simultaneous differential equations. The method of 
undetermined pa ramete r s is often called the direct method; the method of 
undetermined functions is also known as the semidirect method, or the 
Kantorovich method. 

Allowing the weighted averages of the residual to vanish distributes 
the e r r o r s over the entire range of integration. The e r r o r s a re then said 
to be mininnized in a certain sense. This "sense" coincides with whichever 
choices of weighting functions are made. 

This closeness is strongly dependent upon the choice of tr ial func
tions, and less strongly upon the choice of weighting functions. In general , 
a good set of t r ia l functions is obtained only by experience and by famil
iarity with the type of problem to be solved. The choice of weighting func
tions has been, in the past, more res t r ic ted. Several common types a re 
used. These will be described next. 
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B. Weighted-residual Cri ter ia 

Far less emphasis has traditionally been given to the choice of 
"good" weighting functions than to the choice of "good" t r ia l functions. 
Such a question as "Do the weighting functions satisfy the boundary con
ditions?" is often not even asked, because it is not clear whether or not 
such a question is relevant. Nevertheless, there have been severa l at tempts 
over the years to compare different weighted-residual methods. Notable 
among these are the works of Bickley in 1941,'^ and Collings in 1961. 
Bickley solved a linear part ial differential equation analogous to the heat-
conduction equation; Collings solved both linear and nonlinear problems in 
heat conduction. Both concluded that the Galerkin method of weighting 
(described in Section B.5 below) gave better resul ts than the other methods 
used in their comparisons. Other investigators ' " ' ' have also commented 
on the apparent superiority of either the Galerkin method for self-adjoint 
systems, or variational methods for non-self-adjoint sys tems . It must be 
emphasized, however, that the results of these investigations do not con
stitute universal proof. 

The following is a list of the most commonly used weighted-residual 
cr i ter ia . 

1. The Method of Collocation^"'^^'" 

The residual R is allowed to vanish at n points, p = pi, ..., p in 
D. The weighting functions are the Dirac delta functions 

W k i5(p- Pi^), k = 1, ..., n, (2.7) 

so that Eq. 2.6 becomes 

6(p-pj^) RdD = R(pj^) = 0, k = I , . . . , n . (2.8) X 
Equation 2.1 is then satisfied exactly at the n collocation points. As n is 
increased, the residual vanishes at more and more points and presumably 
decreases throughout D. The points pĵ  a re generally chosen in a uniform 
pattern. 

2. The Method of Subdomains" '^^ '" 

The domain D is divided into n distinct subdomains, 
Dj, ..., Dn, which may partially overlap. The weighting functions a re unit 
functions in each subdomain; that i s . 



Wj^(Dk) = 1, 

and 

W j^(Dj) = 0 , k / J. 

In this case , Eq. 2.6 becomes 

i R dD = 0, 1, 

(2 .9) 

(2 .10) 

Equation 2.1 is then satisfied in an average manner in each of the n sub-
domains Du. As the number of subdomains increases , Eq. 2.1 is satisfied 
in smal ler and smaller regions, causing the residual to approach zero. 

3. The Method of Least S q u a r e s " ' " ' " ' " 

The integral of the square of the residual is minimized with 
respect to the undetermined paramete rs A;: 

_ ^ r R^dD = 2 f ^ ^ R dD = 0, 
% ''D •'D °^k 

The weighting functions are therefore 

W, 
^R 
dAv 

k = 1 n. 

(2.11) 

(2.12) 

The Method of Moments 

The weighting functions are given by 

w^ = Pk(°)' ^ = '• •••' •"• (2.13) 

where the Pk(D) are polynomials orthogonal to one another within D. When 
these weighting functions are used, i .e. , when 

I Pj^R dD = 0, (2.14) 

the first n moments of R vanish. Often, in one space dimension, the choice 

W, (x) = x*^. (2.15) 
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is called the method of moments, although these functions are not 
orthogonal. 

5. The Galerkin M e t h o d " ' " ' " 

The weighting functions are the t r ia l functions themselves , so 
that Eq. 2.6 is 

I ĵ̂ R dD = 0, k = 1, ..., n. (2.16) 

If the t r ia l functions are members of a complete set of functions, the 
Galerkin method makes the residual orthogonal to members of this complete 
set. If the operator H is l inear, and if the residual R is orthogonal to 
every member of the complete set, then the residual would be identically 
zero. Thus, for this case, as the number of t r ia l functions inc reases , the 
residual tends to vanish, so that convergence is guaranteed. In pract ice , 
however, convergence may be very slow. Currently, far more emphasis is 
placed upon a pragmatic choice of suitable t r ia l functions than upon con
structing a complete set of functions. 

6, Variational Methods"'*" 

"A variational description of a physical system consists of a 
statement that the variation, or functional differential, of a specified func
tional is equal to some fixed value, which can be and customarily is chosen 
to be zero." This statement also implies that one or more "Euler 
equations," along with their "natural boundary conditions" and initial con
ditions, exist. If these equations and conditions match the systein given by 
Eqs. 2.1 and 2.2, then the variational principle is an al ternate way of 
formulating the problem. The functional is then said to be stationary with 
respect to a rb i t ra ry variations in the functions represented by 0(x), and 
with respect to whichever constraint conditions are present . (These must 
also be accounted for in the functional.) 

Once a variational principle has been found, the so-called 
variational method can be used to effect an approximate solution to the sys
tem. The variational method substitutes a t r ia l solution into the functional 
in the same manner as was done in the method of weighted res iduals . In 
fact, as far as the choosing of t r ia l functions is concerned, variational 
methods offer no grea ter insight than do weighted-residual methods. Indeed, 
it is well known that, for self-adjoint sys tems, the Galerkin method is equiv
alent to the variational method,'' ' '*" 

A true variational principle yields additional information, which 
weighted-residual methods cannot. The functional may represent a quantity 



of importance; variational methods approximate this quantity more 
accurately than they approximate 0(x). 

The adjoint function 0''" must appear in the functional when a 
variational principle is formulated for a non-self-adjoint systenn. Fur 
thermore , the functional is not a true variational principle unless the 
adjoint systenn can be formed when variations a re taken with respect to 0. 
If the system is nonlinear, the variational principle must also be capable of 
generating any auxiliary equations which may be causing the nonlinearity. 

p rob lem" 
To i l lustrate the use of a variational principle, consider the 

H0 - f = 0. (2.17) 

The following functional (which could possibly be physically important) can 
be determined quite accurately by taking arb i t ra ry variations with respect 
to 0+: 

r^ 
F = j 0+(H0-f) dx, (2.18) 

''a 

where 0''" is the function that satisfies the adjoint equation 

H+0+ - f+ = 0. (2.19) 

Now approximate 0 by 

0(x) = X Ak*k(x) (2-20) 
k = i 

and 0"*" by 

n 
0^(x) = X A > k ( i ) - (2.21) 

k=i 

The variational principle 

-b 
/ . " * 

(H0-f) dx = 0 (2.22) 

yields the set of equations 
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/ 

b 
lfri^(x) [H0(x) - f] dx = 0, 

(2 .23) 

which in turn can be solved simultaneously to determine the A^. Equa
tion 2.23 is recognized as being of the same form as Eq. 2.6, where 

W k W = * k W - ^ ^ • ^ * ' 

Now, of course, the functions ^̂ '̂ (̂x) must also be chosen before
hand, as they are "trial functions" used in the approximate solution to the 
adjoint problem, Eq. 2.19. These functions are commonly chosen to be the 
same as the functions VkM- so that the method represented by Eqs . 2.23 
and 2.24 is identical to the Galerkin method. If the system is self-adjoint, 
then A J = Aĵ  for all k; if the system is non-self-adjoint, then the coeffi
cients will differ, and separate solutions to the real and to the adjoint 
problem will be obtained. In either case, the functional F will be deter
mined accurately if good tr ial functions a re chosen. For the non-self-adjoint 
system, the variational method is equivalent to solving two problems 
simultaneously by using the method of weighted res iduals . The t r ia l func
tions for the adjoint problem act as the weighting functions for the "physical" 
problem, and vice versa , 

C. Initial Conditions and Boundary Conditions 

The approximate solution given by Eq. 2.3 will not, in general , sat
isfy the initial conditions in an initial-value problem. To obtain initial values 
of the Aj, when they are undetermined functions of t ime, an initial residual 
is formed, which is weighted in the same manner as the differential equation. 
The initial values of A; then serve as initial conditions for the A;(t) when 
the method of undetermined functions is used. 

Often the tr ial functions satisfy neither the differential equation nor 
the boundary conditions. The boundary conditions should then be weighted 
by the same set of weighting functions as the differential equation,* Surface 
integrals should be carr ied out on these weighted boundary res iduals , and 
added to the differential-equation weighted res iduals . The resulting 
weighted residual is then allowed to vanish in the usual manner. The result
ing equation, interestingly enough, looks much like the first variation of a 
functional that has been used in a variational principle. 

This technique of combining equation residuals and boundary residuals 
is an invaluable way to t reat systems of equations in which the equations 
are related through boundary conditions.- An outstanding example of a sys 
tem of equations that are related in this manner is the multigroup, mul t i -
region formulation of neutron-diffusion theory, in which the neutron fluxes 



and currents a re assumed to be continuous at interfaces between adjacent 
regions. A detailed development is made in Chapter IV to obtain the 
multichannel-synthesis formulation. 

D. Some Observations on Accuracy 

The motivation behind using a weighted-residual method, as opposed 
to using another approximate method, such as Taylor -ser ies expansions or 
perturbation techniques, is to distribute the e r r o r as uniformly as possible 
over the range of the independent variables.^^ Taylor -ser ies expansions 
and perturbation techniques yield highly accurate resul ts near the initial 
s tate, but may not work so well over most of the range. Weighted-residual 
methods, being er ror -d is t r ibut ion principles, tend to sacrifice high initial 
accuracy in order to obtain reasonable accuracy throughout. Unfortunately, 
a proper choice of trial functions is essential , and the selection is not 
always easy. 

Another unfortunate circumstance is that realist ic e r r o r bounds are 
rarely obtained from weighted-residual procedures.^^ There a r e , however, 
convergence theorems available for certain classes of problems.*'"^' Most 
of these apply to the Galerkin method. However, even with the assurance 
that a convergent solution will be obtained by decreasing the increment or 
iterating indefinitely, the convergence may be so slow that the method be
comes computationally impractical unless good tr ial functions are used. 

The usual way of testing a weighted-residual method is to apply it 
to a problem whose exact solution is already known. If the e r r o r s a re sa t i s 
factorily small with a given choice of tr ial functions, then the method is 
used, with the same set of tr ial functions, on other problems of the same 
type. 

E. An Iterative Technique to Improve Accuracy 

Up to now it has been repeatedly pointed out that a proper choice of 
t r ia l functions is essential to the success of any weighted-residual method. 
To overcome this weakness, Kerr '^ developed a rapidly converging iterative 
technique, which itself strongly uses the method of weighted residuals . This 
technique extends the method of undetermined functions in a most ingenious 
and logical manner. 

When the t r ia l solution given by Eq. 2.3 is postulated, where the A. 
a re undetermined functions, the A; are usually chosen to be functions of 
only one of the independent var iables , say xi. The tr ial solutions tp-. a re 
generally chosen to be functions of the remaining members of x.' that i s . 

f^ = V'j(x2 Xr) = Vj,(x2. ...,Xj.) 
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when 

X = ( x j , . . . , X j . ) . 

A w e i g h t e d - r e s i d u a l c r i t e r i o n wil l p r o d u c e a s e t of o r d i n a r y dif
f e r e n t i a l equa t ions to be solved for the Aj(xi) . L i m i t e d by the i n i t i a l cho ice 
of the Vj ' s , the a p p r o x i m a t i o n n e v e r t h e l e s s y i e ld s a so lu t ion tha t t ends 
t o w a r d the exac t solut ion along the xj d i r e c t i o n . K e r r d e c i d e d tha t the s o 
lut ion could be fu r the r i m p r o v e d along the d i r e c t i o n s of the r e m a i n i n g i n 
dependent v a r i a b l e s a s fo l lows: 

After having d e t e r m i n e d the Aj(xi) , r e l a b e l t h e m a s Ajj(xi) and l e t 

V'j'i(x2 x^) = A ] , ( X , ) ^ ] , ( X 3 Xj.), (2.25) 

w h e r e the f i^ a r e a l s o chosen be fo rehand . E q u a t i o n 2.25 is s u b s t i t u t e d 
back into Eq. 2 .3 , which b e c o m e s (neglect ing ^Q) 

n 
* W = Z Ajj(xi)AJ^(x2)V/]2(x3,...,Xr). (2.26) 

j=l 

To d e t e r m i n e the Aj^(x2), use a w e i g h t e d - r e s i d u a l c r i t e r i o n wi th r e s p e c t to 
(xj, , X3, . . . , Xj.). Then, let 

^J2(X3 Xj.) = AJ3(X3)^]3(X4, . . . ,Xi . ) . (2.27) 

Aga in , subs t i t u t e Eq . 2.27 into Eq . 2 . 3 , and u s e a w e i g h t e d - r e s i d u a l c r i 
t e r i o n with r e s p e c t to (xi, X2, , X4, . . . , Xj.) to d e t e r m i n e the A ' (xj). 

This p r o c e s s is cont inued unt i l a l l the funct ions A-j(xi) , . . . , A ' J . ( X I . ) 
have been d e t e r m i n e d . Then, the a p p r o x i m a t e so lu t ion is g iven by 

n 

* ' ( ^ ) = Z AjVx, )A] , (x , ) . . .Aj ' , (x r ) . (2.28) 
j=i 

At this s t a g e , a s e c o n d i t e r a t i o n is begun ; the i m p r o v e d e x p r e s s i o n s 
for Aji(xi) , now labe led A | I ( X I ) , c an be found by us ing the n p roduc t s 
Aj2(x2)A-3(x3)...AJj.(xj.) a s " t r i a l f u n c t i o n s . " Then , A^2(x2) a r e found, us ing 
the prod^ucts A ? I ( X I ) A U X 3 ) . ..AJ^.(xj.) a s t r i a l func t ions , and so on, unti l the 
second i t e r a t i o n has been c o m p l e t e d . At th is poin t , the a p p r o x i m a t e so lu 
tion is 

* ' (x) = I AJ, (x , )Aj^(x2) . . .AJ^(x, ) . (2.29) 
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More iterations can be performed, but Ker r found that very few 
cycles a re needed to obtain a converged solution. In addition, and more 
importantly, he showed that the final form of the generated solution is in
dependent of the initial choice of the f^'s. The accuracy of the solution 
depends only upon the choices of weighting functions and on the number of 
tr ial functions chosen. 

The advantage of choosing a rb i t ra ry t r ia l functions is only at 
the expense of increased conaputational effort. The iterative technique 
could be t ime-consuming, even using a computer. In addition, there is still 
some advantage to choosing reasonable tr ial solutions. Ker r has indicated 
that by choosing t r ia l solutions that satisfy the boundary conditions, he 
could reduce the number of i terations needed for convergence. In summary, 
the method is potentially very powerful and very accurate . The formulation 
for the time-dependent diffusion equations is developed in Chapter VII. 
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CHAPTER III 

APPROXIMATE SOLUTION OF THE TIME-
DEPENDENT DIFFUSION EQUATIONS 

In this chapter, the weighted-residual method is used to solve the 
time-dependent multigroup diffusion equations. In par t icular , the method 
of undetermined functions is used to derive the set of equations known as 
the multimode kinetics equations. ' Then, the point-reactor model and 
modal-expansion approximations are discussed within the framework of 
this method. Finally, the adjoint problem' is formulated to show how a 
variational principle can be used. The treatment is for a one-dimensional 
slab reactor , both in this chapter and in the remainder of this report . Ex
tension to different geometries and to more than one dimension is 
straightforward. 

A. The Method of Undetermined Functions 

For a one-dimensional slab geometry, the multigroup diffusion 
equations and precursor equations can be written as 

-' M i l i l = [V-D(x,t)V - A(x,t) + (1 -/3) XpFT(x,t)] 0(x,t) 
dt 

J 
Z XjXjr,j(x,t), (3.1) 
J 

+ 

and 

ST); 
— ^ ( x , t ) = i 3 . F ' r ( x , t ) 0 ( x , t ) - X . T ] ; ( x , t ) , 

B t J -' •' 
j = 1, ..., J . (3.2) 

where the meanings of the symbols are given by Eqs. 1.3-1.10. The matrices 
D, A, and F-1̂  can be functions of time. In fact, they could even be functionals 
of the flux vector 0(x,t), If so, the system would be nonlinear. 

The method of undetermined functions proceeds by expanding the 
group fluxes, given by Eq, 1,3, in the t r ia l functions (or modes) ^j^(x,t), 
as follows: 

I 
0(x,t) = Y *i(x,t)N.(t) = ^(x,t)N(t), (3.3) 

i=l 

The bar over the flux vector indicates that Eq, 3,3 is an approximate so
lution. The modes Vi(x,t) are known as shape or trial functions; the unde
termined functions N^(t) are called amplitude functions," Most of the time 
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dependence is car r ied by the amplitude functions. The choice of the t r ia l 
functions is in principle a rb i t r a ry , except for the condition that they must 
be linearly independent. 

In Eq. 3.3, the modes Tp^(x,t) a re chosen to be the column vectors 

> , i (x , t ) 

^'^(x.t) = , i = 1 I, (3.4) 

^Gi(' '.t) 

and are combined to form the G x I matr ix of tr ial functions ^(x,t) in the 
following manner: 

V/(x.t) = [Vi(x,t). . .^i(x,t)] 

V'u(x,t) . . . *il(x,t) 

V'Gl(x.t) V'Gl(x,t) 

(3.5) 

Each amplitude function Nj(t) is a scalar function, so that N(t) is a colunnn 
vector of amplitude functions: 

N(t) 

Nid)" 

N,(t) 

(3.6) 

The next step is to substitute the approximate solution Eq. 3.3 into 
Eqs. 3.1 and 3.2 to obtain 

V - ' ^ ( x , t ) ^ = rVD(x, t )V - A(x,t) + ( 1 - p) X p F T ( x , t ) - V - ' ^ l V-lx, 

+ Z XjXjT)j(x,t), (3.7) 

and 

—^ (x,t) = p.FT(x,t)V(x,t)N(t) - XjTl;(x,t) 
St J ^ •' 

(3.8) 
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The above expressions are not truly equations unless the exact solution 
happens to be contained within the approximate solution. The approxima
tion is more properly expressed by subtracting the right-hand sides of each 
from the left-hand sides to form the following res iduals : 

RF(x,t) = V )V-A . [ « „ , - , |£H, . , ] . [v.o. 

-, J 
+ ( I - / 3 ) X p F ^ l(/(x,t)N(t) - Z ^jXjrij(x,t), 

-I j=i 

and 

Rp.(x,t) 
J St 

(x,t) - /3jFT^(x,t)N(t) + XjTij(x,t). 

(3.9) 

(3.10) 

The residuals Rp.(x,t) given by Eq. 3.10 are formed so that the multimode 
kinetics equations can be obtained. This procedure is not necessary , 
however. An alternate way to solve the space-t ime problem is to formally 
integrate Eq. 3.2 with respect to the time variable (see Eq. 7.1), and sub
stitute the result into Eq. 3.1. 

In addition to obeying Eqs. 3.1 and 3.2, the group fluxes must also 
satisfy the following initial and boundary conditions: 

0(x,O) = 0o(x) 

0io(x) 

*Go('') 

(3.11) 

and 

0(a,t) = 0(b,t) = 0, (3.12) 

where a and b are the outer boundaries of the reactor . When the t r ia l so
lution Eq. 3.3 is substituted into Eq. 3.11, the following initial residuals 
result: 

Rl(x) = 0„(x) - ^(x,0)N(0). (3.13) 

A common procedure is to choose one of the ip^ vectors to be the initial 
state 0o(x). Then, the corresponding amplitude function Nj(0) is completely 
determined (usually chosen to be unity), while the remaining amplitude 
functions are initially zero . 



The simplest way to ensure that the t r ia l solution satisfies the 
boundary conditions is to choose only tr ial functions that satisfy these 
boundary conditions. Failing this, the following boundary residuals are 
formed: 
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RA(t) = lKa,t)N(t), (3.14) 

and 

R g d ) = ^(b,t)N(t) (3.15) 

The residuals given by Eqs. 3.9, 3.10, 3.13, 3.14, and 3.15 vanish 
identically only when the exact solution is contained within the approximate 
solution. Otherwise, they are nonzero functions of space and t ime. As yet, 
they cannot be evaluated because the functions Ni(t) have not yet been deter
mined. A good approximation procedure should yield functions Ni(t) which 
minimize the residuals in some manner. One such procedure, the method 
of weighted res iduals , will now be used to derive the multimode kinetics 
equations. The multimode kinetics equation can in turn be solved to com
plete the approximate solution to Eqs. 3.1 and 3.2. 

B. The Multimode Kinetics Equations 

Consider the G x I matr ix of weighting functions 

"W,i(x,t) . . , Wji(x,t)' 

W(x, t) 

WGi(x,t) WGl(x,t) 

(3.16) 

which, in principle, can be chosen arb i t rar i ly . It must , however, be of the 
same order as the matr ix of t r ia l functions Eq. 3.5. In addition, no two 
columns can be proportional to one another, or a linearly dependent system 
will result . With the use of Eq. 3.16, the method of weighted residuals can 
be applied as follows. 

The boundary residuals RA(t) and RB(t) can be combined with the 
differential-equation residuals Rp(x,t) as follows: Multiply Eq. 3.9 by 
Eq. 3.16, and integrate over the spatial variable. The boundary residuals 
RA(t) and RB(t) a re then multiplied by W(a,t) and W(b,t), respectively. The 
boundary weighted residuals are then subtracted from the differential-
equation weighted res iduals , and the result allowed to vanish: 

j w'r(x,t)RE(x,t) dx = I wT{x,t)Rp(x,t)dx - wT(a,t)RA(t) - wT(b,t)RB(t), 
</x •'x 

(3.17) 
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and 

X wT(x,t)RE(x,t) dx = 0. (3.18) 

In addition, Eq. 3.10 can be multiplied by w'^(x,t), and Eq. 3.13 can be 
multiplied by wT(x,0). The resulting weighted-residual c r i te r ia a re 

and 

I 

I 

wT(x,t)Rp.(x,t) dx = 0, (3.19) 

wT(x,0)Rj(x) dx = 0. (3.20) 

The weighted-residual cr i ter ia represented by Eqs . 3.18-3.20 yield a set of 
f i rs t -order ordinary differential equations, which can be solved to deter 
mine the unknown functions Ni(t). This set of equations can be put into a 
familiar form if the spatial integrals a re appropriately defined. This will 
now be done. 

Define a set of precursor amplitude functions by 

Cj(t) = I wT(x,t)Xjr]j(x,t) dx, j = 1 J. 
Jx 

3.21 

Assuming that the matr ices X; a re time-independent, we can differentiate 
Eq. 3.21 to obtain 

— = J^ wT(x,t)Xj — dx + J^ ^ - XjT,j(x.t) dx. (3.22) 

For the amplitude functions to contain most of the time dependence, 
both ^(x,t) and W(x,t) should contain only slowly varying functions which are 
bounded for all x and t. One way of ensuring that these c r i te r ia a re sa t i s 
fied is to impose the constraint condition** 

X wT(x,t)V"' — dx = 0, (3.23) 
x S' 
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which will enable the multimode kinetics equations to be derived. If the 
shape functions are picked beforehand, they must be chosen such that 
Eq. 3.23 is not violated. If they are calculated during the transient analy
sis , Eq. 3.23 acts as a normalization condition on ^(x,t). If Galerkin 
weighting is used, Eq. 3.23 becomes 

2 
^ / ^T(x,t)v-'V/(x,t) dx = 0. (3.24) 

If, as is commonly the case , the t r ia l functions and the weighting functions 
are chosen to be time-independent, the constraint conditions a re satisfied 
automatically. Fur the rmore , the second t e rm on the right-hand side of 
Eq. 3.22 vanishes. Henceforth, time dependence of the t r ia l functions will 
be retained, but the weighting functions will be assumed to be t ime-
independent. 

When Eqs . 3.21-3.23 are substituted into the weighted-residual 
c r i te r ia , Eqs. 3.18-3.20, the following equations are obtained: 

r wT(x)v-'v(x,t) dx—= rwT(x)rv DV - A 

+ (1 - P ) X p F l j V(x,t) d x N ( t ) 

+ Z ^ jC j ( t ) . (3.25) 

i 

dC; r 
- j ^ = j3j / wT(x)XjFT^(x,t) dxN(t) - XjCj(t), (3.26) 

• 'x 

and 

r w'^(x)0o(x) dx = r wT(x)V'(x,0) dxN(O). (3.27) 
•'x •'x 

The spatial integrals in Eqs. 3.25 and 3.26 can all be written in 
shorthand form by defining the following I x I ma t r i ces : 

A(t) = j wT(x)V-'V(x,t) dx, (3.28) 
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p(t) = j wT(x) 
•'x 

+ Z '^jXjF^ * (^ ' 
j=' -I 

V-DV-A + (1 - ^ ) XpFT 

t) dx. 

3.(t) = lij f wT(x)XjFT^(x,t) dx, 

(3 .29) 

(3 .30) 

and 

/3(t) = Z /3j(t)- (3.31) 

When Eqs. 3.28-3.31 are substituted back into Eqs. 3.25 and 3.26, we obtain 
the multimode kinetics equations 

A ( t ) ^ = [p(t)-/3(t)] N(t) + Z ^jCj(t). 

and 

dCi 
— ^ = Pj(t)N(t) - XjCj(t), j = 1 J. 

(3.32) 

3.33 

Finally, assume that V'i(x,0) = 0o(x)> so that the initial conditions for the 
N^(t) become 

Ni(0) = 1, 

and 

Ni(0) 0, 2, ..., I. 

(3.34) 

The multimode kinetics equations can thus be written in the same 
form as the equations for the point-reactor model. The mat r ices given by 
Eqs. 3.28-3.31 are called the generat ion-t ime matr ix , the reactivity matr ix , 
and the effective delayed-neutron-fraction mat r i ces . Fur the rmore , as is 
seen in Section C below, the point-reactor model is the s implest special 
case of the multimode kinetics formulation. Other special cases , which are 
also discussed in this chapter, include orthogonal-expansion me thods" and 
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synthesis methods. ' Techniques that use either spatially ' 
porally^' ' '" discontinuous tr ial functions, such as nodal methods or quasi-
static methods, can also be considered in this context. Since they require 
slight modifications in the derivation of their nnultimode kinetics equations, 
they a re discussed in more detail in Chapters IV and V, respectively. 

C. The Point - reac tor Model 

The point-reactor model ' was the ear l ies t and simplest method in
troduced to t reat reactor t ransients . Its name is derived from the assump
tion that the flux remains in the same spatial configuration throughout a 
t ransient; i .e. , the reactor can be treated by considering only one point in 
space. 

As a weighted-residual method, the point-reactor model corresponds 
to choosing just one time-independent mode in the expansion given by 
Eq. 3.3; i .e. , 

0(x.t) = y',(x)Ni(t). (3.35) 

This mode is usually, but not always, chosen to be the initial flux distribution. 
In principle, any weighting functions can be chosen, but traditionally the 
steady-state adjoint functions have been used. The possibility of choosing 
other weighting functions has been considered by Gozani and by Gross and 
Marable,*' although neither reported any numerical comparisons. 

The mathematical propert ies of the point-reactor model a re well 
known.*' The amplitude function is expressed by a sum of J + 1 real-valued 
exponentials exp(a)jt), J of which have negative arguments . The remaining 
exponential has either a positive or a negative argument, depending upon 
whether the reactivity is positive or negative. The exponent that can change 
sign is identified with the so-called asymptotic period Each of the oij is a 
root of the so-called inhour equation, given by 

J PjU) 
p = AcD + Z -^r- (3.36) 

j=i J 

Although the point-reactor model is not adequate to describe tran
sients in large r eac to r s , much has been learned about the nature of reactor 
t ransients from its use. The role of the delayed-neutron p recurso r s can 
be well understood by using it. In fact, the value p = P (prompt cri t ical) 
is of vital importance. When p < |3 , the delayed neutrons arising from de
cay of fission products aid in controlling a reactor excursion When p > p , 
this control feature vanishes. The point-reactor model and the concept of 
reactivity contain too much valuable physical information to be abandoned 
entirely. For this reason, the multimode kinetics equations are written as 
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a generalization of the point-reactor model. Fur the rmore , in Chapter VIII, 
attempts are made, when using more sophisticated approximations, to in
terpret transients in terms of the terminology of the point-reactor model, 
such as reactivity, asymptotic period, and prompt cri t ical . 

D. Continuous Spatial Modes 

In a linear problem, if the Galerkin method is used in conjunction 
with a complete set of trial functions, a convergent solution is guaran
teed,'^'*' This fact is well known in the theory of orthogonal functions and 
Fourier series.* ' It was only natural, then, that an expansion into a ser ies 
of orthogonal functions would be one of the first techniques studied. Such 
investigations were reported by Garabedian e_t al. ' ' 

Garabedian's cri terion for choosing the t r ia l functions is to choose, 
in order, each function that obeys the Helmholtz equation, 

VV + B^^ = 0, (3.37) 

and satisfies the boundary conditions given by Eq. 3,12, The resulting tr ial 
functions form a complete set and are given by 

(2 i - 1) TTX 
^ g i ( x ) = COS , g = 1, . . , , G ; i = 1 I . ( 3 , 3 8 ) 

This same set of functions also serves as the set of weighting functions, so 
that Galerkin weighting is being used. 

Unfortunately, however, Garabedian's method has not been widely 
adopted for two reasons. F i r s t , convergence is not guaranteed for systems 
in which the coefficients are time-dependent, or for nonlinear sys tems. In 
these cases , the method has lost any advantages it may have possessed over 
other cr i ter ia . Second, and more significantly, convergence has been found 
to be very slow for all but the most simple problems; many modes are 
needed to obtain a convergent solution. For these reasons , many investi
gators ' ' '^ ' have turned to more pragmatic ways of choosing t r ia l 
functions. 

The so-called natural modes^'*^ of the reactor have been suggested 
as trial-function choices. These a re the modes that result when Eqs . 3.1 
and 3,2 are put into the form of eigenvalue problems. The "lambda modes"^ 
are the solutions of the static eigenvalue problem 

-V -DV +A] 7//(x) ^ — (1- |3) Xp+ Z iSjXjj F T ^ ( X ) , (3,39) 
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The "omega-p modes" ' a re the modes of a reactor with no delayed-neutron 
source . They are formed by replacing S 0 / d t by aOp0, to obtain 

[ V - D V - A + (1 -/3) XpF^] ^(x) = CDpV-'^(x), (3,40) 

Finally, the "omega-d modes" ' a re the natural modes of the reactor with 
delayed neutrons. As a result , they include not only the flux components 
^(x), but also the delayed components f,Ax), as is shown in 

J 
[ V D V - A + ( l - p ) XpFT] V/(x) + Z XjXj?j(x) = CDdV"'V'(x). (3,41) 

j = i 
and 

i3jFTv/(x) - Xj?j(x) = a)dej(x). (3.42) 

The natural modes exhibit the propert ies of finality*^ and biorthogo-
nality,^' that i s , if the adjoint problem is formulated, and the adjoint func
tions a re used as weighting functions (biorthogonality), the multimode kinetics 
equations will be decoupled (finality). Each amplitude function can then be 
determined independently. Unfortunately, the natural modes have little more 
than acadennic value because they are extrennely difficult to generate. This 
is part icularly true for the omega-d modes, which change whenever the shape 
changes; i .e. , they are continually changing. 

The modes in Eq. 3.3 do not have to be generated by methods that 
formulate eigenvalue problems. For example, Dougherty and Shen ' generate 
what they call "Green's function modes" by jolving diffusion equations with 
fixed fission sources in various subregions of the reactor . Once they have 
determined the modes, they formulate a variational principle from which 
they determine the amplitude functions by using a semidirect method. They 
use the adjoint function in their variational principle, which in turn is ap
proximated in the same manner as is the flux, i .e. , by a linear combination 
of the functions adjoint to the "Green's function modes." As described in 
Chapter II, this technique of forming a variational method is a general iza
tion of the method of weighted res iduals . The t r ia l functions of the adjoint 
problem serve as weighting functions in the flux system, and vice ve r sa . 
The adjoint problem and the corresponding variational method for the space-
time problem are described in Section F of this chapter. 

E. Synthesis Modes 

A synthesis method attempts to construct a solution to a mult i
dimensional system from solutions of lower-dimensional sys tems. For ex
ample, the three-dimensional s teady-state flux distribution in a nuclear 
reac tor could be constructed by combining solutions to two-dimensional 
problems in a weighted-residual procedure. Or, with more relevance to 
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the s p a c e - t i m e p r o b l e m , the t r i a l functions in E q . 3.5 could be c h o s e n a s 
a c t u a l s h a p e s c h a r a c t e r i s t i c of p o s s i b l e s t a t e s of the r e a c t o r being s t u d i e d . 

A "good" se t of t r i a l funct ions would c o n s i s t of s h a p e s tha t would 
in s o m e way " b r a c k e t " ' the t r u e flux d i s t r i b u t i o n dur ing a t r a n s i e n t . This 
t echnique is e s p e c i a l l y va luab le in the a n a l y s i s of c o n t r o l - r o d m o v e m e n t s 
for rou t ine ope ra t i on . F o r e x a m p l e , the shape of the flux wi th a l l r o d s in, 
or with a l l rods out, is wel l known. These s h a p e s do indeed b r a c k e t flux 
conf igura t ions that ex i s t while the r o d s a r e m o v i n g . 

The b racke t ing idea has dubious va lue in the a n a l y s i s of h ighly non
l i nea r a c c i d e n t - i n d u c e d t r a n s i e n t s . T h e r e is no way , in th i s c a s e , to p ick 
the b r a c k e t i n g shapes be fo rehand . N e v e r t h e l e s s , flux s y n t h e s i s could s t i l l 
be u s e d to ana lyze t r a n s i e n t s in i t i a t ed by a wide v a r i e t y of a c c i d e n t s . In 
p a r t i c u l a r , the cho ices of spa t i a l l y and t e m p o r a l l y d i s c o n t i n u o u s t r i a l 
funct ions , which a r e d i s c u s s e d in C h a p t e r s IV and V, offer far m o r e f lex i 
bi l i ty than the cont inuous s y n t h e s i s p r e s e n t l y unde r d i s c u s s i o n . 

F . The Adjoint P r o b l e m : A V a r i a t i o n a l P r i n c i p l e 

When the s y s t e m r e p r e s e n t e d by E q s . 3 . 1 , 3.2, 3 . 11 , and 3.12 is 
l i n e a r , t h e r e is a se t of equa t ions adjoint to i t , which can be w r i t t e n a s ' 

J 
- V " ' ^ ^ (x,t) = [ V - D V - A T + (1 - p) F X T ] 0*(x,t) + 2 )3.r)*(x,t), (3.43) 

At ^ . J J 

d0* 
dt 

a n d 

J=i 

- ^ r ] * ( x , t ) = X.FxJ<t>*(x.t) - X.-n*(x,t), ( 3 . 4 4 ) 
S t J •> 3 J J 

w h e r e t h e a s t e r i s k s i n d i c a t e a d j o i n t f u n c t i o n s , a n d t h e s u p e r s c r i p t T s i g 

n i f i e s t r a n s p o s e s of t h e r e s p e c t i v e m a t r i c e s . W h e n t h e e i g e n v a l u e p r o b l e m 

f o r t h e o m e g a - d m o d e s i s f o r m e d , a n d a c o r r e s p o n d i n g e i g e n v a l u e p r o b l e m 

i s f o r m e d f o r t h e a d j o i n t e q u a t i o n s , t h e e i g e n f u n c t i o n s f o r t h e f l u x p r o b l e n a 

a r e o r t h o g o n a l t o t h e e i g e n f u n c t i o n s of t h e a d j o i n t p r o b l e m . ' T h e f l u x a n d 

a d j o i n t e i g e n f u n c t i o n s a r e t h e n s a i d t o f o r m a b i o r t h o g o n a l s e t . ^ ' A c c o r d i n g 

to B e c k e r , a s t a t i o n a r y f u n c t i o n a l c a n a l w a y s b e w r i t t e n i n t e r m s of a 

s y s t e m a n d i t s a d j o i n t s y s t e m . A c c o r d i n g l y , t h e f o l l o w i n g f u n c t i o n a l i s a 

s t a t i o n a r y f u n c t i o n a l f o r t h e s y s t e m b e i n g c o n s i d e r e d in t h i s c h a p t e r : 

V 0 * T . D V ^ . ^ , T ^ A - ( 1 - P ) XpFT] 0 - i | ' 0 * T v - l | - 0 - 0 T v - ' ^ 0 * ^ 

V,X, , , + r , p . p T , . , * , ^ , ^ . l ( , * | . , ^ . , ^ | . , ^ ^ ] | a x d t . ( 3 . 4 5 ) 

' t=o • 

J 

+ 1 
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For simplicity, the initial conditions, final conditions, and boundary con
ditions have been omitted from the above. By taking a rb i t ra ry variations 
of J with respect to 0*, and allowing them to vanish, we obtain the group-
diffusion Eqs . 3.1 and 3.2. Similarly, by taking variations with respect 
to 0, and allowing 6j to vanish, we obtain the adjoint-system Eqs . 3.43 
and 3.44. 

The functional J is stationary with respect to a rb i t ra ry variations 
in 0* and 0, so that the value of J can be determined very accurately. In 
this case , though, since J does not represent any physical quantity, the 
advantage gained from using the variational principle is not c lear . 

As mentioned in Chapter II, when a variational method is used, the 
adjoint function must be expanded as a sum of tr ial functions; that i s . 

0*(x,t) = X ^*(x)N*(t). (3.46) 

In addition, when Eqs. 3.3 and 3.46 are substituted into the variational prin
ciple, the taking of variations is essentially equivalent to using two comple
mentary weighted-residual methods which determine the Nj(t) and the N; (t). 
The tr ial functions for the first method are the weighting functions for the 
second, and vice versa . 

If the choice 

f*{x) = f-{x) (3.47) 
1 ^ * 

is made, then the variational nnethod is equivalent to using the Galerkin 
method to solve both the flux and adjoint problems. Indeed, even if Eq. 3.47 
does not hold, there seenns to be little advantage to using a variational 
method for solving space-t ime problems. Fur ther , since the functional 
given by Eq. 3.45 can only be written for linear sys tems, a weighted-
residual procedure should be adopted from the outset. There is no need 
to search for variational principles for solving space-t ime problems when 
the more simple weighted-residual formulation will do just as well. 

It is possible, however, to find variational principles for nonlinear 
sys tems . Luco has formulated one for a two-energy group model with no 
delayed neutrons, using the following "constant power removal" model ' for 
the temperature change: 

• ^ = ^ ( 2 f i 0 , + Zf202). (3.48) 

where "K is a conversion factor from fissions to some unit of energy, p is 
the density of the reactor mater ia l , and Cp is its specific heat."^* 
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When Eq. 3.48 is used with Eqs. 3.1 and 3.2 to formulate a var ia 
tional principle, the concept of an adjoint temperature must be introduced. 
A set of adjoint equations is then derived from the variational principle by 
taking variations with respect to 0i, 02, and T. These equations a re more 
complicated than Eqs. 3.43 and 3.44. Fur thermore , the equation adjoint to 
Eq. 3.48 is so complicated that the real fluxes themselves appear in it. 
Nevertheless, the adjoint system is l inear. 

Luco's derivation underscores the ear l ier observation that weighted-
residual methods are preferable, in that it serves to i l lustrate the complexity 
of variational methods for even the most simple nonlinear sys tems . Al
though the formulations are possible, they seem to be far less pract ical than 
the direct use of weighted-residual methods. 
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C H A P T E R IV 

S P A T I A L L Y DISCONTINUOUS TRIAL FUNCTIONS 

A. Spa t i a l D i s c o n t i n u i t i e s 

The s p a t i a l l y d i s c o n t i n u o u s t r i a l - f u n c t i o n me thod a t t e m p t s to gain 
m o r e f lex ib i l i ty by us ing t r i a l funct ions s u i t a b l e to loca l r e g i o n s wi th in 
a r e a c t o r , r a t h e r than to the e n t i r e r e a c t o r . The t i m e d e p e n d e n c e is then 
d e s c r i b e d by a d i f fe ren t s e t of a m p l i t u d e funct ions for e a c h r eg ion . If t r i a l 
funct ions a r e c h o s e n p r o p e r l y , fewer a r e r e q u i r e d wi thin a r e g i o n to obta in 
an a c c u r a t e so lu t ion as c o m p a r e d wi th t r i a l funct ions that v a r y con t inuous ly 
t h roughou t the r e a c t o r . In addi t ion , the n u m e r i c a l p r o b l e m of " a l m o s t 
l i n e a r d e p e n d e n c e " is e a s i e r to so lve than in the con t inuous c a s e , b e c a u s e 
only t r i a l funct ions wi th in a r e g i o n need be c o m p a r e d . L i n e a r dependence 
is d i s c u s s e d in Appendix A. 

The d i s c o n t i n u i t i e s a p p e a r at the r e g i o n i n t e r f a c e s . They fall into 
two c l a s s e s , which can m o s t e a s i l y be d e s c r i b e d wi th the aid of the t w o -

d i m e n s i o n a l " r e a c t o r " of F ig . 1. F o r th is 
z r e a c t o r , the t r i a l functions a r e funct ions 

of the v a r i a b l e x, so tha t the u n d e t e r m i n e d 
funct ions wi l l depend upon z and t. In the 
f i r s t c l ass ,^° one se t of funct ions con t inuous 
in X is used b e t w e e n z = 0 and z = zj , and 
a n o t h e r s e t , a l s o con t inuous in x, is u sed 
b e t w e e n zi and zi. Since only one s p a c e 
d i m e n s i o n is be ing t r e a t e d in th i s r e p o r t 
the f i r s t c l a s ^ wi l l not be d i s c u s s e d in 
th is c h a p t e r . Howeve r , a s wi l l be s e e n 
in C h a p t e r V, the t e m p o r a l l y d i s con t i nuous 
t r i a l - f u n c t i o n m e t h o d s do fall into this c l a s s . 

113-1895 

Fig. 1. A Two-dimensional Reactor 
Illustrating Spatially Dis
continuous Trial Functions 

In the s econd c l a s s , known a s m u l t i 
channe l syn thes i s ,^ ' ' ** one s e t of t r i a l func
t ions is u sed for a l l z and t. T h e s e t r i a l 

funct ions m a y exhib i t d i s c o n t i n u i t i e s a t Xj. The m a i n f e a t u r e of m u l t i 
channe l s y n t h e s i s , h o w e v e r , i s not tha t the t r i a l funct ions a r e d i s c o n t i n u o u s , 
but that t he r e g i o n s (0 to Xj, Xj to b) a r e each d e s c r i b e d by d i f fe ren t s e t s 
of m o d e s . S ince n e u t r o n s b o r n in one r eg ion can unde rgo an event in the 
o t h e r , i n t e r r e g i o n l e akage m u s t be c o n s i d e r e d . The usua l way is to i n t r o 
duce coupl ing coe f f i c i en t s , which a r e m u l t i p l i e r s of the f luxes and c u r r e n t s 
a t the i n t e r f a c e s , for e x a m p l e , a t Xi. In th is way, an effort is m a d e to 
p r e s e r v e the d i f f u s i o n - t h e o r y i n t e r f a c e cond i t ions of flux and c u r r e n t 
con t inu i ty . 

The coup l ing -coe f f i c i en t a p p r o a c h can only p r o v i d e c r u d e e s t i m a t e s 
of the i n t e r r e g i o n flux c o n t r i b u t i o n s . The coupl ing coef f ic ien ts canno t 
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account for changes in the flux shape and can only be time-dependent if the 
matr ix of diffusion coefficients is time-dependent. Nevertheless, the method 
has been used successfully. 

B. The Role of Interface Residuals in Multichannel Synthesis 

In this section, the multichannel-synthesis version of the multimode 
kinetics equations will be derived. Par t icular emphasis will be placed on 
weighting the diffusion-theory interface conditions in order to derive the 
coupling coefficients. 

Suppose a reactor is partitioned into K synthesis regions, or chan
nels, with interfaces at x„ ..., x^ . , - Then, Eqs. 3.1, 3.2. 3.11 and 3.12 can 
be rewritten in terms of the familiar multiregion formulation as follows 
(assuming one energy group for simplicity): 

1 - ^ = [V • D, (x,t)V - A(x,t) + (1 - /3) XpF^(x,t)] -i^(x,t) 
V dt "̂  '^ 

+ Z ^jXj^jk(x,t), k = 1. 

J = l 

- ^ = /3jF (x,t)0k - Xj7ljk(x,t), 

and 

01,(^,0) = *ok(x). 

f>i(a,t) = 0j<;(b,t) = 0, 

I , 

1, ..., K, 

K, 

K, 

(4.1) 

(4 .2 ) 

(4 .3 ) 

(4 .4 ) 

where the subscript k indicates the kth channel. In addition to Eqs. 4.1-4.4, 
the system includes the following interface conditions, which preserve 
continuity of flux and current: 

ai0k(xj^,t) = ai0[^^j(x]^,t), k = 1, ..., K - 1, (4 .5 ) 

and 

-2Dk(xk,t) — a2Dk+,(xk.t) ^ — 1, ..., K - 1. (4.6) 
X=Xk 

The parameters a^ and a^ a re , for now, unspecified. 
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The synthesis approximation is made for each channel by expanding 
each 0]^ in the t r ia l solutions; 

II, 

y x . t ) = Z *ki(x)Nki(t), k = 1 K. (4.7) 

The integer I> is the number of t r ia l functions chosen for the kth synthesis 
region. When the tr ial solutions are substituted into the system given by 
Eqs. 4.1-4.6, the following residuals are formed; 

1 ^ * W .,. — 

RFk('''^> = - - ^ - [V • D^(x,t)V - A(x,t) + (1 - P) XpF^(x,t)] 0k(x,t) 

Z XjXj^jk(x,t), k = 1 K, (4.8) 

R 
ar) 

Pjk(' ' ' ' ) = - ^ - PjF^(x,t)0k + Xjrijk(x,t), 

RA(t) = *i(a,t), 

RB(t) = *K(b.t). 

Rok('') = *ok(x) - ^],U.O), k = 1, . 

^Iw('^k''* ^ ai0k+i(xk,t) - ai0k(xk.t). 

k = 1, 

K, 

k 

j = 1 J, 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

and 

Rjk(^k.t) = a2Dk+,(xk,t)-
S 0 

k+1 
dx 

30k 
ajDk(xk,t) j ^ k = 1, 

X=Xk 

(4.14) 

Equations 4.8-4.12 are the multiregion equivalents of Eqs. 3.9, 3.10, 
3.13, 3.14, and 3.15. Equations 4.13 and 4.14 are called the interface 
res iduals . They are not unique, however. Adding Eq. 4.6 to Eq. 4.5 and 
subtracting Eq. 4.6 from Eq. 4.5 produce the following equivalent interface 
conditions: 
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S«k 
ai0i^(x^,t) + a2Dj^(x^,t) g^ 

k = 1, . . . , K - 1, 

a i*k+i ( ' ' k . t ) +a2Dk+i ( ' ' k . t ) g 

x=xk 

'k+i 

X = Xk 

(4.15) 

a n d 

S0k 
ai0j^(xi^,t) - a2D)^( .xk , t ) -g^ 

k = 1, . . . , K - I . 

x=xk 

k+i 
ai«k+i( '^k. t) - a 2 D k + i ( x k . t ) ^ 

(4.16) 

When Eq. 4.7 is subs t i t u t ed into E q s . 4 .15 and 4 .16 , the fol lowing r e s i d u a l s 

a r e fo rmed : 

k + i 
l^Sk^^'k'') = a i0k+i ( ' ' k ' ' ) - a i0k(xk . t ) + a2Dk+,(xk ' t ) 5 

90k 
(X2Dk(xk,t) — 

X = Xk 

K - 1, (4.17) 

and 

^Dk'^ 'k ' t ) = cti*k+i(xk,t) - a i * k ( x k . t ) - a 2 D k + i ( x k , t ) — 
k+i 

x=xk 

+ Ct2Dk(xk.t) Sx 
1, . . . , K - 1. (4.18) 

X=Xk 

The r e s i d u a l s given by E q s . 4 .17 and 4.18 differ f r o m t h o s e g iven by 
E q s . 4.13 and 4 .14. N e v e r t h e l e s s , e i t h e r s e t i s p e r m i s s i b l e . 

The r e s i d u a l s can be we igh ted and the w e i g h t e d - r e s i d u a l m e t h o d 
used . However , fu r the r exp l ana t i on is n e e d e d . In C h a p t e r II, it w a s m e n 
t ioned that s u r f a c e i n t e g r a l s should be f o r m e d w h e n us ing the w e i g h t e d -
r e s i d u a l me thod on the b o u n d a r y c o n d i t i o n s . The b o u n d a r y w e i g h t e d r e s i d 
ua ls should then e i t h e r be added to or s u b t r a c t e d f r o m the d i f f e r e n t i a l -
equat ion weigh ted r e s i d u a l s in o r d e r to be ab le to m a i n t a i n a c o m p l e t e l y 
d e t e r m i n a b l e s y s t e m . The s u m (or d i f f e rence ) should then be a l lowed to 
vanish . In this c h a p t e r , i n t e r f a c e r e s i d u a l s a r e t r e a t e d in the s a m e 
m a n n e r . 



In t h e o r y , the we igh t ing funct ions for the i n t e r f a c e r e s i d u a l s a r e 
a r b i t r a r y . In p r a c t i c e , though, they a r e u s u a l l y c l o s e l y r e l a t e d to the 
we igh t ing funct ions u s e d to we igh t E q s . 4 .8 and 4 .9 . S t a c e y ' s v a r i a t i o n a l 
m e t h o d , for e x a m p l e , would weight E q s . 4 .13 and 4.14 wi th the following: 
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W 
I k , (xw't) = 4 Dk(xk. t ) 

' ^ ^ k , i k 

d x 
+ Dk+ , (xk , t ) . 

<^Wk+Mk.,! 

X = Xk 
d x 

x=xk. 

(4.19) 

a n d 

^Jk,ik^''k) = i [wk,i ̂ >Xk) + Wk+,,ij^ ,/xk)] 1 Iki 

ik+i = 1. •••. Ik+i; . . , K - 1. (4.20) 

The fac to r 1/2, h o w e v e r , a u t o m a t i c a l l y i m p l i e s tha t e a c h channe l con ta ins 
an equa l n u m b e r of t r i a l func t ions ; that i s , Ik = Ik+i- A m o r e g e n e r a l 
approach^ '^' would be to c h o s e 

dWk, 
Wj^ (xk. t) = 7 D k ( x k , t ) - ^ ' k 

=''k 

d W 

+ (1 - 7 ) Dk+,(xk, t) 
l^+'.ik-i 
d x 

(4.21) 

a n d 

^ J k iJ""^^ ~' ( ' - ^ ^ Wi^,ik(''k) + 7Wk+i , ik+,(xk) . 'k = 1' Ik ; 

'k+1 - ' ^k+i^ 1 K - 1, (4.22) 

w h e r e 0 £ 7 :S 1. When y is e i t h e r z e r o or one, each r e g i o n m a y have 
d i f fe ren t n u m b e r s of t r i a l func t ions .* ' If z e r o is chosen , the f l u x - i n t e r f a c e 
cond i t i ons a r e w e i g h t e d by the Ik+, v a l u e s of the d e r i v a t i v e of the weight ing 
funct ions of the r e g i o n to the r i g h t of the i n t e r f a c e . The c u r r e n t - i n t e r f a c e 
cond i t i ons a r e w e i g h t e d by the Ik v a l u e s of the we igh t ing funct ions of the 
r e g i o n to the left of the i n t e r f a c e . If 7 is c h o s e n to be uni ty , the f lux-
i n t e r f a c e cond i t i ons a r e w e i g h t e d by the Ij^ v a l u e s of the d e r i v a t i v e s of the 
l e f t - s i d e we igh t ing funct ions whi le t he c u r r e n t - i n t e r f a c e r e s i d u a l s a r e 
w e i g h t e d by the Ik+i v a l u e s of the r i g h t - s i d e weigh t ing func t ions . 



44 

The choices 7 = 0 or 7 = 1 appear to be equally valid. Fur ther 
more, if each region contains the same number of modes, no value of 7 
appears to deserve preference. Pomraning ," however, in his discussion 
of temporally discontinuous tr ial functions, concludes that 7 = 1/2 is 
the most "natural" choice. Pomraning's arguments are discussed further 
in Chapter V. 

The argument can be repeated for the weighting of Eqs. 4.17 and 
4.18. This time, however, 

WSk.iJ-k) = ^Wk. i jx^ ) + (1 - 7) Wk+,.i^^/xk), (4.23) 

and 

^Dk,i ('''̂ ^ " (̂  ""^^ Wk,i^(xk) + 7Wk+i,ij^^/xk), ik = 1 Ik, 

ik+i = 1 Ik+i, k = 1, ..., K - 1. (4.24) 

Equations 4.23 and 4.24, with 7 = 1 , will now be used to complete the 
derivation of the multimode kinetics equations of multichannel synthesis. 

The weighted-residual procedure is nov^ performed by multiplying 
Eq. 4.8 by the weighting functions Wk ii,(x), integrating over region k, and 
subtracting the interface weighted residuals obtained by multiplying 
Eq. 4.17 by Eq. 4.23, and Eq. 4.18 by Eq. 4. 25: 

/"Xk 
0 = / Wk,ij^(x)Rpj^(x,t) dx - Wk,i^(xk)Rsi^(xk,t) 

- Wk,ii^(xk-i)RDk-,('^k-i't). k = 1 K, (4.25) 

where 

Xo = a, and xfj = b. 

Weighted-residual cr i ter ia for the p recursor equations and the initial con
ditions result when the weighting functions Wk i, (x) multiply Eqs. 4.9 
and 4.12: ' '^ 

-Xk 

X Wk,ii^(x)Rp. (x,t) dx = 0, (4.26) 
jk 

k-i 



and 
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f 
•^ X i 

Wk,i^(x)Rok(x) dx = 0, ik = 1 Ik, k = 1 K, (4.27) 

where 

Xo = a, and xj<; = b. 

The weighted-residual c r i t e r ia given by Eqs. 4.25-4.27 are equivalent 
to the multimode kinetics equations. Therefore, a reactor divided into K 
synthesis regions with Ik modes in each region could be described by 
Eqs. 3.32 and 3.33, with the coefficients of the matr ices p, ^ j , and A 
described as follows: 

A is a block diagonal I x I matr ix 

A = 

0 0 0 . . . A 

(4.28) 

where each Ak is a square submatrix of order Ik. Note that 

K 

I = Z Ik-
k=i 

Within a submatrix Ak, an element is 

Amn = / W^^^(x) iVk,n(x)dx, m = l Ik, n = l . '" J •y x\. 
Ik-

(4.29) 

The |3j matr ices a re also block diagonal matr ices 
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/3i(t) 

0 0 

0 P j , 0 

0 0 0 . . . /3 JK 

j = 1 J- (4 .30) 

Within a s u b m a t r i x p, i^, the e l e m e n t s a r e 

Pjmn(t) = Pj / Wk,m(x)XjFT(x , t )^k ,n ( ' ' ) dx, m = 1 Ik, 

X k - i 

n = I Ik. 

F ina l ly , p(t) i s an I x I b lock t r i d i a g o n a l m a t r i x g iven by 

(4.31) 

P(t) = 

V J ) p(f) 0 0 

p(j) i^i> 0 0 

0 0 0 0 

0 0 0 0 

0 0 

0 0 

p ( K - i ) (K) 

„ ( K - i ) (K) 
^ K ^K 

(4 .32) 

The s u b m a t r i c e s pj^ ''(t) on the m a i n d i agona l con ta in e l e m e n t s g iven by 



Pfei(t) = j | w k , ^ ( x ) [(1 - P) XpFT(x.t) - A(x,t)l *k.„(x) - Dk(x.t) ^^^^^ — ^ } 
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- Wk,n,(xk.,) lil''k,n(='k-i) + ( ' - I j ) Dk(xk- r ' ) -
di\ 

Wk,m(='k) '^iV'k,n(''k> - (l-<^i) Dk(xk.')-
d*^ 

'k. " = 1 Ik-
(4 .33) 

T h e s e e l e m e n t s a c c o u n t for the i n t r a r e g i o n p r o c e s s e s . The i n t e r r e g i o n 
p r o c e s s e s a r e r e p r e s e n t e d by the coupl ing coef f i c ien t s , which a r e d i s c u s s e d 
next . 

(k) 
The s u b m a t r i c e s P k - , (t) on the s u p r a d i a g o n a l r e p r e s e n t the coupl ing 

f rom the r e g i o n to the r i g h t of i n t e r f a c e k to the r eg i o n to the left of the 
i n t e r f a c e . The m a t r i x e l e m e n t s for th i s " b a c k w a r d " coupl ing a r e g iven by 

P[^i(t) = Wk,m(xk) ai?^k+i,n(xk) + a2Dk+,(x,^,t) 
d̂ .̂  

k+i,n 
d x 

m = 1, . . . , Ik, n = 1, . . . , Ik+i (4 .34) 

The s u b m a t r i c e s pJ (t) on the s u b d i a g o n a l ' r e p r e s e n t the coupl ing f rom 
the r e g i o n to the left of i n t e r f a c e k to the r eg ion to the r igh t of the i n t e r 
f ace . The m a t r i x e l e m e n t s for th is " f o r w a r d " coupl ing a r e 

pfe]i(') = Wk+..n.(xK 

m = 1, . . . , I k+i ' 

/ V ... , ^ '^ '^'k.n 
a i ^ k , n ( ' ' k ) - a2Dk(xk,t) — ^ ^ 

n = 1 Ik-

X = X k 

(4.35) 

The u s u a l m a t r i x no ta t ion can be ob ta ined for the e l e m e n t s of A, p, and p . 
by expanding the s u b m a t r i c e s wi th in the l a r g e m a t r i x and r e l a b e l i n g the 
m a t r i x e l e m e n t s . 

The a m p l i t u d e funct ions and the p r e c u r s o r a m p l i t u d e funct ions a l s o 
m u s t be r e l a b e l e d . Within the kth s y n t h e s i s r eg ion , the p r e c u r s o r a m p l i t u d e 
funct ions a r e 
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/

^k 
Wkm(^)Xj^jk(x.t)dx, 

"k-i 

= 1, 

j = 1. 
(4.36) 

To effect the relabeling, the amplitude functions Ni^jj^(t) (see Eq. 4.7) and 
the precursor amplitude functions from each region are placed in I-
dimensional column vectors from the top, beginning with k = 1, and p ro 
ceeding channel by channel, until the vectors are filled. 

Equations 4.33-4.35 contain the unspecified paramete rs a; and ttj, 
which were introduced as multipliers of the interface conditions, Eqs. 4.5 
and 4.6. When aj and a2 are both unity, there are no interface current 
contributions to Eq. 4.33. This choice shall be called surface-cancellation 
weighting. If a i = l / 4 and a^ = l / 2 , however, the surface te rms in each 
equation are the part ial currents at the interfaces. Consequently, this 
choice shall be called par t ia l -current weighting. These weighting techniques 
are compared in Chapter VIII. 

Unfortunately, the coupling coefficients are time-dependent only when 
the diffusion coefficients are time-dependent. The formulation described 
above assumes time-independent shape functions. However, the contribution 
to the total flux in one region from the changing flux in the others is not 
neglected, because the coupling coefficients multiply the amplitude functions. 

Another limitation of the method is a direct consequence of the 
diffusion-theory interface conditions: nonadjacent region coupling must 
be neglected. This assumption is very poor when the synthesis regions 
are small. 

C. A Nodal Approximation 

If only one tr ial function is chosen in each synthesis region, the 
multichannel-synthesis method reduces to a nodal method." '* ' Many nodal 
methods have been formulated from many different points of view. The 
multichannel-synthesis version is one of the few that are consistent. It 
lies completely within the confines of diffusion theory. Consequently, it 
should not be expected to do as well as those based on t ranspor t theory.^°'^' 
Another drawback is that shape changes with time do not appear in the 
definitions of the shape functions. 

When ai = 1/4 and a.^ = 1/2, the coupling coefficients a re propor
tional to the partial currents at the interfaces. This choice has been a s 
signed to a nodal approximation in an ad hoc derivation by Kaplan.'^ There 
does not seem to be any a pr ior i reason why this choice of a j a n d a ^ should 
be better or worse than any other choice. Accordingly, Chapter VIII contains 
a numerical comparison of par t ia l -cur ren t weighting and surface-cancellation 
weighting in the nodal approximation derived above. 
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C H A P T E R V 

T E M P O R A L L Y DISCONTINUOUS TRIAL FUNCTIONS 

A. I n t r o d u c t i o n 

In a h ighly n o n l i n e a r t r a n s i e n t , the flux shape can change d r a s t i c a l l y 
and con t inua l ly , so tha t the " b r a c k e t i n g " idea d i s c u s s e d in C h a p t e r III would 
in th i s c a s e be e s s e n t i a l l y u s e l e s s . A c c o r d i n g l y , s e v e r a l i n v e s t i g a t o r s ' ' '* 
have d e v e l o p e d m e t h o d s tha t p r o v i d e m e a n s of changing the shape funct ions 
at s e l e c t e d t i m e s du r ing a t r a n s i e n t a n a l y s i s . Some of t h e s e m e t h o d s use 
p r e c a l c u l a t e d s h a p e s . and o t h e r s r e c a l c u l a t e the s h a p e s in s o m e m a n n e r 
du r ing the a n a l y s i s . ' The f o r m e r a r e known a s t e m p o r a l l y d i s c o n t i n u o u s 
f l u x - s y n t h e s i s m e t h o d s ; the l a t t e r a r e c a l l e d q u a s i s t a t i c o r f a c t o r i z a t i o n 
m e t h o d s . E a c h can be r e g a r d e d a s a s p a c e - t i m e w e i g h t e d - r e s i d u a l m e t h o d , 
a s i s shown in th is c h a p t e r . 

In C h a p t e r IV, it was s t a t e d tha t the t e m p o r a l d i s c o n t i n u i t i e s a r e 
s i m i l a r to the f i r s t type of s p a t i a l d i s c o n t i n u i t i e s . To s ee th is m o r e c l e a r l y , 

c o n s i d e r F ig . 2, which shows a o n e -
d i m e n s i o n a l r e a c t o r unde rgo ing a 
t r a n s i e n t . It i s be ing a n a l y z e d with 
one se t of shape funct ions f rom to to 
t j , and a s econd se t f rom tj to tf. E a c h 
se t , h o w e v e r , is con t inuous in x. As 
wi l l be s een , th is type of d i s con t inu i ty 
does not give r i s e to coupl ing coeff i 
c i e n t s . I n s t ead , a new " in i t i a l r e s i d u a l " 
is r e q u i r e d when the se t of t r i a l func-
t ions is changed . 

Fig. 2. Illustration of the Use of Temporally 
Discontinuous Trial Functions 

se t and a n o t h e r s u b s t i t u t e d for it . 

E r r o r s can be i n t roduced when 
one se t of t r i a l functions is s u b s t i t u t e d 
for a n o t h e r , o r , m o r e r e a l i s t i c a l l y , if 
one t r i a l function is r e m o v e d f rom the 

C o n s e q u e n t l y , j u m p d i s c o n t i n u i t i e s in 
the n e u t r o n flux and the p r e c u r s o r c o n c e n t r a t i o n s wil l r e s u l t . If t r i a l 
funct ions a r e r e m o v e d , they should be " u n i m p o r t a n t " in o r d e r that the 
s i z e s of the d i s c o n t i n u i t i e s be m i n i m i z e d , that i s , if t h e i r c o r r e s p o n d i n g 
a m p l i t u d e funct ions a r e s m a l l . If the s h a p e funct ions a r e r e c a l c u l a t e d 
at t-, d i s c o n t i n u i t i e s can s t i l l r e s u l t , u n l e s s s o m e c o r r e c t i v e ac t i on is 
t aken . Such ac t ion u s u a l l y t a k e s the f o r m of an i t e r a t i v e t echn ique for 
s h a p e - f u n c t i o n r e c a l c u l a t i o n . The newly c a l c u l a t e d s h a p e s and the p r e v i o u s 
s h a p e s a r e u s e d in l i n e a r c o m b i n a t i o n for each i t e r a t i o n unt i l the t r u e 
s h a p e function is found. 

Sec t ion B be low con t a in s a w e i g h t e d - r e s i d u a l t r e a t m e n t of t e m p o r a l 
d i s c o n t i n u i t i e s . The t r e a t m e n t ex t ends the d e r i v a t i o n of the m u l t i m o d e 
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kinetics equations given in Chapter III to admit temporally discontinuous 
tr ial functions. Section C of this chapter contains a discussion of the 
quasistatic (or factorization) method. 

B. A Weighted-residual Treatment of Temporal Discontinuities 

If shape functions are changed at t = tj during the analysis of a 
transient, an additional condition must be added to the system of equations 
given by Eqs. 3.1, 3.2, 3.11, and 3.12. This condition states that the true 
flux must not exhibit a jump discontinuity at t = tj: 

(x.t^^) = 0(x,ti.) (5.1) 

For simplicity, a one-energy group model is adopted in this chapter. In 
addition, the subscripts 1 and 2 denote the values of functions when 
to — t < tj, and tj < t s tf, respectively. Thus, Eq. 5.1 can be rewrit ten as 

^i(x,ti) = 02(x,ti). (5 .2) 

Instead of the trial solution given by Eq. 3.3, consider the following 
trial solutions: 

^(x,t) = Z Vi,(x,t)Nii(t) ^ ^,(x,t)N,(t), (5 .3) 

and 

hi^.t) = Z lJ'i2(x,t)Ni2(t) = ^2(x,t)N2(t), (5 .4 ) 

where Ij and Î  are the number of tr ial functions chosen in the time intervals 
to :£ t < ti and ti < t £ tf, respectively. The matr ices f^ and f 2. and the 
column vectors N, and N2 are given by 

*i(x,t) = [^i,(x,t) ... ^j^_(x,t)], 

V2(x,t) = [f,2(x,t) ... f^^,(x,t)], 

'N„(t)"' 

N,(t) = 

_Ni,,(t)_ 

(5.5) 

(5.6) 

(5 .7 ) 



and 

N2(t) 

Ni2(t) 

Ni^,(t) 

(5.8) 

When Eqs. 5.3 and 5.4 are substituted into Eqs. 3.1, 3.2, 3.11, 3.12, and 5.2, 
the residuals R p / x . t ) , Rp2(x,t), Rpj,(x,t), Rpj2(x,t), Ri,(x), Ri2(x), RA,(t). 
RA2(t), Rgj(t), and Rg2(t) a re formed. These residuals are analogous to 
those given by Eqs. 3.9, 3.10, 3.13, 3.14, and 3.15; those subscripted with 
1 are for the first time interval, those subscripted with 2 are for the 
second time interval. The residual Rj (x), then, can be interpreted as 
the initial residual for the second time interval and is written as 
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Rj2(x) = 02(x,ti) - 0,(x,ti). (5,9) 

It is evident that the weighted-residual method used to derive the 
multimode kinetics equations in Chapter III can be repeated here to give 
two systems of multimode kinetics equations, one for each time interval. 
When the weighted-residual method is applied to Eq. 5.9, the initial con
ditions for the amplitude functions to be used in the second time interval 
will be obtained. They will be expressed in te rms of the values at t = t, 
of the amplitude functions used for the first time interval. However, this 
use of Eq, 5,9 is not straightforward, as is now shown. 

The following questions must be answered if temporally discontinuous 
t r ia l functions a re to be used: What if the weighting functions are changed at 
t = ti as well? Which set should be used? What if I, / I2; that is, what should 
be done if the number of t r ia l functions is changed? 

Consider the weighting-function matr ices 

W,(x,t) = [WH(x,t) ,,. Wj_j(x,t)], 

W2(x,t) = [Wi2(x,t) ,,, Wl (x,t)] 

(5.10) 

(5.11) 

and 

Wi(x) = [W,i(x) ... Wi^i(x)], (5.12) 

which weight, respectively, the residuals for the two time intervals, and the 
initial residual for the second time interval. Assuming that choices for Wi 
and Wj have already been made, the problem is to select Wi(x). Some 
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reasonable choices seem to be Wi(x,ti), W2(x,ti), or some linear combination 
of the two. A closer inspection of Eqs. 5.10-5.1 2 reveals , however, that 
since Ij may not equal I2, Wi(x,ti) cannot, in general, be chosen for Wi(x), 
whereas W2(x,ti) can always be chosen. This fact was first recognized by 
Becker . " 

Suppose, on the other hand, that Ii = I2. Then, Wi(x) can be chosen 
as any linear combination of Wi(x,ti) and W2(x,ti); for example, 

Wi(x) = aW,(x,ti) + (1 - a ) W2(x,ti), (5.13) 

where 0 :£ a s 1, but is otherwise arbi t rary. Indeed, as Pomraning* points 
out, a is so arbi t rary that it can even be a function of x. He goes on to 
conclude, on "pseudophysical grounds," and on incorrect mathematical 
grounds, ' that the most reasonable choice is a = 1/2. His mathematical 
argument will not be considered here. However, he argues on a "physical" 
basis that each weighting function is considered equally when a = 1/2. Even 
if he is correct, Becker 's observation regarding unequal numbers of t r ia l 
functions in each time interval, which would set a = 0, makes the argument 
somewhat irrelevant. The initial conditions for the amplitude functions used 
in the second time interval can now be found, with a = 0; that is , 

Wi(x) = W2(x,ti). (5.14) 

When Eq. 5.9 is multiplied by the weighting function (l/v)W2''^(x,ti), 
and the result integrated over all x, the result is 

X •̂  T 1 -
W2 (x , t i ) - - [02(x , t i ) - 0i(x, t i)] dx = 0. (5.15) 

If Eqs. 5.3 and 5.4 are used, Eq. 5.15 becomes 

rb 1 
0 = / W2T(x,t.) - 2̂(x,ti) dx N2(ti) 

•'a 

J/.b W2^(x,ti)i^i(x,ti) dx N,(ti). (5.16) 
a 

The I2 X I2 matrix in the first t e rm is immediately recognized as the gen
eration time matrix A2(ti). The I2 x I, matr ix in the second t e rm shall be 
labeled V2i(ti) and is given by 
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V2,(ti) = r W2T(x,ti)i?/',(x,ti)dx. (5.17) 

J a. 

Equation 5.16 becomes 

A2(ti)N2(ti) = V2i(ti)Ni(ti). (5.18) 

Finally, the initial conditions N2(ti) are determined by 

N2(ti) = A2-'(ti)V2,(ti)N,(ti), (5.19) 

and the multimode kinetics equations can now be solved over the second 
time interval. 

Both quasistatic methods and flux-synthesis methods have been 
treated by the above analysis. The temporally discontinuous synthesis 
methods differ from the quasistatic methods in the method of choosing the 
tr ial functions Vi and ip^. These are precalculated in a synthesis method 
to be used beginning at t = to and t = ti, respectively. The quasistatic 
method recalculates the t r ia l functions when t = tj, using the t r ia l functions 
V'i(x,to) along with an interative scheme. This important method is described 
in detail in Section C below. 

C. The Quasistatic Method 

1. Main Features 

The quasistatic methods*'"" '* have always been formulated using 
only one nnode, that is, Ij = I2 = 1, in Eqs. 5.3 and 5.4. In addition, the 
weighting functions have always been the steady-state adjoint functions. The 
multimode kinetics equations then reduce to the point-reactor model, which is 
used until a shape recalculation is to be made. To derive the equation with 
which the second shape can be calculated, Eq. 3.3 is substituted into Eq. 3.1 
to obtain 

V St L 
T 1 dN I 

D V - A + ( l - P ) X p F T - - ^ j - l ^ , ( x , t ) 

'W)^ ^jXj1j(x,t). (5.20) 

In addition, the constraint condition, Eq. 3.23 becomes 
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I W ' ^ ( x ) - *(x , t ) dx = 0. (5.21) 

The shape equat ion is coupled to the a m p l i t u d e e q u a t i o n in 

t h r e e "ways: 

a. 

b . 

The p r e c u r s o r t e r m in Eq. 5.20 is d iv ided by N(t) . 

The f i r s t t e r m on the l e f t -hand s ide of Eq . 5.20 con t a in s 
the l o g a r i t h m i c d e r i v a t i v e of the a m p l i t u d e funct ion, t ha t 
i s , the r e c i p r o c a l p e r i o d . 

c. Nonl inear feedback effects m a k e D, A, and F ^ funct ions 
of ^(x, t )N(t) . 

The ma in a s s u m p t i o n of the q u a s i s t a t i c m e t h o d is now m a d e . The 
t ime dependence of the shape function is not as i m p o r t a n t a s tha t of the a m 
pl i tude function. '^ F r o m a n u m e r i c a l s tandpoin t , th is m e a n s tha t only a few 
shape- func t ion r e c a l c u l a t i o n s a r e needed, whi le the a m p l i t u d e funct ion is 
r e c a l c u l a t e d a g r e a t many t i m e s . F u r t h e r m o r e , the t e r m 9 ^ / 3 t in Eq. 5.20 
can e i the r be neg lec ted e n t i r e l y or r e p l a c e d by the following b a c k w a r d 
di f ference app rox ima t ion : 

at *(x,t i) 
^ (x , t . ) - ^(x, to) 

(5.22) 

Equat ion 5.22 a s s i g n s a l i nea r v a r i a t i o n to ^ (x , t ) ove r the f i r s t t i m e i n t e r v a l . 
Neglec t ing bf/dt e n t i r e l y (the "o r ig ina l q u a s i s t a t i c a p p r o x i m a t i o n " ) a s 
s u m e s that the shape function ^(x,to) i s u s e d th roughou t the f i r s t i n t e r v a l . 
The following equat ion, ca l l ed the " i m p r o v e d q u a s i s t a t i c a p p r o x i m a t i o n , " 
r e s u l t s when Eq. 5.22 is subs t i t u t ed into Eq . 5.20: 

V • DV-i//(x,ti) ( 1 - /3) X p F l 
dNI 

vN(ti) dt 
t = t; 

t l - tn 
^ (x , t i ) 

»(x,to) 

v ( t i - t o ) 

J XjXjr)j(x,tj) 

N(ti) 
(5.23) 

The "ad iaba t i c a p p r o x i m a t i o n " a l s o n e g l e c t s 3 ^ / d t in Eq . 5.20. 
F u r t h e r m o r e , it a s s u m e s that the shape of the d e l a y e d - n e u t r o n s o u r c e is the 
s a m e as that of the p r o m p t - n e u t r o n s o u r c e . The new shape function is then 
found by solving the " l ambda m o d e " e igenva lue p r o b l e m , Eq. 3.39, for the funda
men ta l l ambda mode . The ad i aba t i c mode l , then, r e m o v e s a l l coupl ing be tween 
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the amplitude calculation and the shape calculation, except for nonlinear 
feedback effects. Ott and Meneley'* have shown that the adiabatic model 
is quite inferior to both the original quasistatic and the improved quasistatic 
methods. Nevertheless, it is far better than the point-reactor model, in 
which the shape function is never recalculated. 

The residual of Eq. 5.9 can be significant in each of the quasi-
static methods. In fact, even when Eq. 5.19 is used to determine the initial 
condition of N2, the e r r o r introduced is so large that the solution becomes 
meaningless Therefore, an iterative scheme must be used to make 
Rl2(x) = 0 The improved quasistatic method implicitly contains a natural 
i terative scheme, which proceeds as follows: 

For the initial guess, the shape ^(x,ti) is estimated from 
Eq. 5.23. The second iteration now proceeds over the first time interval 
with 

Vi(x,t) = i i__ l^ . , (x , to ) + - ^ — ^ *.(x,ti). (5.24) 
ti - to ti - to 

The shape function given by Eq. 5,24 is used to calculate p(t), Pj(t), and 
A(t) in the point-reactor model. When the amplitude function at t = ti 
has been recalculated, Eq. 5.23 is again used to get the shape function 
^i(x,ti). Iterations a re continued as needed; very few are actually r e 
quired. When a converged solution to 0(x,ti) is obtained, the residual 
given by Eq. 5.9 vanishes, that is, 

V'2(x,ti) = Vi(x,ti), ^ (5.25) 

and 

N2(ti) = N.(ti). (5.26) 

The solution proceeds over the second time interval until another shape 
recalculation is needed. 

Quasistatic methods have traditionally been formulated using 
the s teady-state adjoint functions as the weighting functions. There is no 
intrinsic reason why this choice should be made, especially in the analysis 
of highly nonlinear t rans ients . Becker** has suggested the use of the t ime-
dependent adjoint function. This choice, however, requires a simultaneous 
solution of the adjoint problem, A more practical alternative is to use the 
time-dependent shape function itself as the weighting function. This ap
plication of the Galerkin method requires the satisfaction of the constraint 
condition, Eq. 3.24. 
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2. Shape-function Improvement Using a Nodal Method 

A possible way to increase the t ime-interval size between shape-
function recalculations is to apply the nodal method to the shape-function 
equation,^* that is, to Eq. 5.20. Since the precursor behavior must also be 
considered, Eq. 3.2 is rewritten as 

- ^ ( x , t ) = /3jFT(x,t)V/(x,t)N(t) - XjTij(x,t). (5.27) 

For the first iteration in the procedure described above, the reactor can 
be divided into nodes for purposes of carrying out the shape calculation. 
The shape function can now be expanded in the approximate solution 

M 
V'(x.t) = Z em(x)Pm(t) ^ e(x)P(t). (5.28) 

where each d^ is the portion of the shape ^(x,to) appearing in the mth node. 
Each Pj^(t) is then the "amplitude of the shape function" in the mth region. 
The matrices e(x) and P(t) are 

(x) = [ei(x) ... eM(x)]. (5.29) 

and 

P(t) 

Pi( t ) 

PM(t) 

(5.30) 

Equation 5.28 can now be substituted into Eqs. 5.20 and 5.27 to obtain the 
residuals 

RF(x,t) = i e(x) 1? 
V d t 

V • D(x,t)V - A(x,t) + (1 - /3) XpFT(x,t) - ^ 1 e(x )P(t) 

-7J(T) .Z ^j^jij(''.t) (5.31) 
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and 

RPj(x,t) = - ^ ( x , t ) - AjF'^(x,t)e(x)P(t)N(t) + XjT)j(x,t), (5.32) 

where 

a(t) = 
1 dN(t) 

N(t) dt • 

Introduce the weighting functions Q{x), 

n{x) = [n,(x)... n^{x)]. 

(5.33) 

(5.34) 

which will be used to weight Eqs. 5.31 and 5.32 in the method of weighted 
residuals . In a development closely resembling that of Chapter IV, the 
following interface residuals and weighting functions are obtained: 

Rs^(' 'm>t) = a, [e^+,(xm)Pm-n(t) - em(xm)Pm(t)] 

Dm-ti(xm.t)-
de. 

dx 
Pm-fi(t) 

Dm(^m't)-
de. 

dx Pm(t) 

RDm( ' ' ' ^ ' ' ' = ai[em-fi(xm)Pf„ + ,(t) - ern(' 'm)Pm(t)] 

Pm+.(t) 

and 

-<h 
de m+i D m + i ( x m . t ) — ^ 

- Dm(' 'm't) 
de. 

m^-^m"-' dx 

fie (xm) = ^m(xm). 

Pm(t) 

(5.35) 

(5.36) 

(5.37) 

nDm(''m) = ^m+i(xm). m = 1, ..., M - 1. (5.38) 
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To use the me thod of we igh ted r e s i d u a l s , note that 

oXi 

o b 

/ n ' ^ (x)Rp(x , t ) dx = 

J a. 

/•xi 
I f2,(x)Rpj(x,t) dx 

•^a 

' ' ' M - i 

and 

/.Xi 

/ n i (x )Rp.^(x , t ) dx 

J a. 

n-^(x)Rp.(x , t ) dx 

r 
^ M - i 

"M(>')RPJM^^'" '̂ '̂  

so that , analogous to E q s . 4.25 and 4 .26, 

0 = / n j n ( x ) R F „ ( x . t ) dx - n m ( x m ) R S ^ ( x m . t ) 

•^Xm- i 

- n m ( ' ' m - i ) R D j n . i ( ' ' m - i ' ' ) ' 

and 

X" 
•̂  X . 

(5.39) 

(5.40) 

(5.41) 

J ^m(x )Rp .^ (x , t ) dx = 0, m = 1 M, j = 1 J , (5.42) 

w h e r e 

Xo = a and xjyj = b . 

The w e i g h t e d - r e s i d u a l c r i t e r i a , E q s . 5.41 and 5.42, y ie ld a se t of f i r s t - o r d e r , 
o r d i n a r y d i f ferent ia l equa t ions , s i m i l a r in f o r m to the m u l t i m o d e k i n e t i c s 
equa t ions . This s y s t e m can be w r i t t e n in the c o m p a c t f o r m . 
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L ^ = K(t)P(t) . ^ I X3Qj(t), 
j = ' 

(5.43) 

and 

dQ 
J . ^ = Bj(t)N(t)P(t) - XjQj(t). (5.44) 

where the matr ix elements of the I x I diagonal matr ices L and Bj(t) are 
given by 

-r nj.(x)—ei.(x) dx, r = 1, .... M, (5.45) 

and 

3jj.r(t) = Pj / fir(x)FT(x,t)Xjer(x) dx, r = 1, ... M: 

j = 1 J- (5.46) 

The I X I matr ix K(t), however, is not diagonal, but tridiagonal. The main 
diagonal elements are given by 

K „ ( t ) = r '̂  n^(x) fv . Dr(x,t)V - Ar(x,t) + (1 - P) XpFT(x,t) - ^ 1 er(x) dx 

- firC^r-i) 
de. 

a i e r (x r . , ) + (1 - a2) Dr(x^., , t) -—-

nr(xr) 
de^. 

a , e r (x r ) - (1 -a-z) Dr(xr ' ' ) "jT" r = 1 M. 

(5.47) 

The backward-coupling te rms on the supradiagonal are 
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Kr,r-n(t) = f2r(''r) 
de r+l aiei.+i{xr) +a2Dr+i(xi . , t ) -2^ 

r = 1, ..., M - 1, 

vhereas the forward-coupling terms on the subdiagonal a re 

(5.48) 

Kr+i,r(t) = ^r+.( ' ' r ) 
de. 

a-iQ^ix^) - a 2 D r ( x r , t ) - ^ 
x=xr 

1, ..., M - . 1 . 

(5.49) 

Equations 5.43 and 5.44 are solved to determine the shape 
function V(x,t); the point-reactor model is used for N(t), Notice, however, 
that the systems are coupled, since N(t) appears in Eqs, 5.43 and 5.44. 
Fortunately, since ^(x,t) is slowly varying in time relative to N(t), 
Eqs. 5.43 and 5,44 do not have to be solved whenever N(t) is calculated. 
Another fortunate circumstance is that, in addition to the subintervals 
for performing the N(t) and the Tp{x,t) calculations, the quasistatic method 
provides an intermediate subinterval, which is used to calculate new 
functional forms for p, (3;, and A. (This refinement is not discussed here, 
except as pertinent to the P(t) calculation.) Whenever it is t ime to change 
the functional form of p(t), new values of the eleiments of P(t) and the Qj(t) 
can be found, particularly since new functional forms for Bj(t) and K(t) are 
also found at these t imes. An approximate form for N(t) is also to be chosen 
to aid in the solution. 

The nodal approach provides a much better "first guess" for 
the shape function at t = tj then for the time-independent first choice of 
Tp described in Section C l of this chapter. In addition, this approach can 
reduce the number of shape calculations needed to analyze a transient . 
Since the shape calculations are the most difficulty by far, substantial 
savings in computing time possibly can be made. The nodal approach is 
not needed for the second iteration, since a linear shape function can now 
be used. However, when the calculation passes to the next time interval, 
with the new shape, the nodal method can again be used for the first 
iteration. 
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CHAPTER VI 

INTEGRATION OF THE MULTIMODE KINETICS EQUATIONS 

Chapters III, IV, and V were concerned with various approximations 
to effect the spatial integration of the multigroup diffusion equations. Each 
of these approximations uses the method of weighted residuals to derive 
the nnultimode kinetics equations, which must be integrated to complete the 
solution. 

The integral-equation technique of integrating the multimode kinetics 
equations is discussed in this chapter. Par t icular emphasis is placed on 
the method of undetermined pa ramete r s , since it is a weighted-residual 
technique. Piecewise polynomial functions are chosen as trial functions 
for N(t), and three weighted-residual cr i ter ia are discussed. They are col
location weighting, subdomain weighting, and Galerkin weighting. 

A. Formulations of Integral Equations 

Conventional numerical-integration methods, such as finite-
difference or Runge-Kutta methods, have proved to be poor choices for 
integrating the point-reactor model. Because the time derivative is multi
plied by l /v , very small time steps must be taken to ensure a stable solution. 
This is especially true for fast reac tors , where v = 10 cm/sec or more. 
Consequently, approximate methods based on integral-equation formula
tions have been developed, " ' which successfully overcome the finite-
difference t ime-s tep limitation. Most of these methods formally integrate 
the point-reactor model and approximate the slowly varving portions of 
the integrands with tr ial solutions. • 

It is possible to write the point-reactor model in the quasilinear 
form. 

dN A ^ + aN(t) = [p(t)- p(t) + a] N(t) + £ X.Cj(t), (6.1) 

and 

dC. 

"dT = Pj('^^('> - ^J^J(')' 
(6 .2 ) 

w h e r e a is a p a r a m e t e r . E q u a t i o n s 6.1 and 6.2 a r e now fo rma l ly i n t e g r a t e d 
to ob ta in 

N{t) = N(t„) exp[-a(t - to)/A ^• j P(t') - P(t') +0. N(t') •̂  Y. >-jCj(t') exp[-o(t-f)/AIdt' . (6.3) 
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and 

Cj(t) = Cj(to) exp[-Xj(t-to)]+ Pj / N(t')exp[-Xj(t-t'] dt', (6,4) 
•̂ to 

The time-step limitation is overcome by approximating the slowly varying 
part in each integral. One such approximation is the Taylor series 

N(to + T) = N(to) •^TN'(to)+— N"(to) + . , . , (6,5) 

where T = t' - IQ. The integrals in Eqs. 6.3 and 6.4 are then evaluated 
term by term. The parameter a is arbitrary. A good choice has been 
found to be** 

a = ^ - p(to), (6.6) 

Another possible choice is ' 

0̂  = 1- (6.7) 

Hansen's largest eigenvalue method''* also can be derived from the 
quasilinear form. In Hansen's method, the trial solution becomes 

a- = ^ - pit). (6.8) 

and 

N(to-l-T) = N(to)e (6.9) 

where m is the largest root of the inhour equation for an average reactivity 
appropriate to each time step. In addition, Hansen also forms the following 
trial solutions for the precursors: 

C.(to+T) = C.(to)e^ (6,10) 

The success of the method of undetermined parameters, '" '" however 
does not depend upon the value of a, because it is not really a quasilinear 
method. Instead of writing Eq. 6,1 and formally carrying out the integration, 
we immediately assume a trial solution for N(t) and substitute it into the 
pomt-reactor model. The resulting residual is then multiplied by weighting 
functions, and the method of weighted residuals is applied. This enables the 
undetermined parameters in the trial solution to be evaluated, thus com
pleting the solution. Even if a remains in the formulation, it can be can
celled at any stage of the calculation. 
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Instead of i l lustrating the method of undetermined pa ramete r s with 
the point - reactor model, we will use it to integrate the multimode kinetics 
equations. This is done in Section B below. 

B. The Method of Undetermined P a r a m e t e r s 

The multimode kinetics equations are rewritten here for easy 
reference. 

J 
A - ^ = [p(t)- ^(t)] N(t) + Z XjCj(t), (6.12) 

and 

where 

dC 
- ^ = Pj(t)N(t)- XjCj(t), (6.13) 

J 
P(t) = Z Pj(t)-

j=' 

In addition, N(t) is an I-dinnensional column vector of amplitude functions, 
the Ci(t) are I-dimensional vectors of p recursor amplitudes, and A, p(t), 
P;(t) are I x I ma t r i ces , where I is the number of modes used in the spatial 
integration. 

• 
The method of undetermined pa ramete r s is now used for the temporal 

integration. If Eq. 6.13 is substituted into Eq. 6.12, then 

JT.T -̂  dC -

A ^ = p ( t ) N ( t ) - I -^- f^-'^) 
j=' 

If the values of dC./dt were kno-wn, Eq. 6.14 could be integrated directly. 
Equations 6.13 can be formally integrated over the time interval tj £ t :S tj+j 
as follows: 

Cj(t) = C_j(ti) exp[-Xj(t-ti)]+ r ^ j ( t ' )N( t ' ) exp[ -X. ( t - t ' ) ]d t ' . (6.15) 

In addition, the following expressions for dC;/dt can be obtained by differ
entiating Eq. 6.15: 
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dC. 
J 

dt 
= -X.Cj(tj)exp[-Xj(t-tj)] + ^j(t)N(t) 

- \. ^(t ' )N(f) exp[-Xj(t-t ')] dt ' . (6.16) 

The system represented by Eqs. 6.14 and 6.16 can be solved in the 
interval tj < t £ tj+j by first expanding the amplitude functions in the t r ia l 
functions T, (t) as follows: 

N(t) = X Ai,Tk(t). 
k=o 

(6.17) 

Each Tj^(t) is a scalar function of time, so that each Ak is an I-dimensional 
column vector. The vector Ao is the value of the amplitude function vector 
N(ti), so that To(t) is unity. Each element of each remaining Aĵ  must be 
determined to complete the solution. 

If Eq. 6.16 is substituted into Eq. 6.14, the following equation 
results : 

dN A ^ = [p(t)-/3(t)]N(t) = X XJ 
j=' 

Cj(ti) exp[-Xj(t-ti)] 

r£ A-,.. )N(t') exp[-X-(t-t ')] dt' (6.18) 

The approximate solution, Eq. 6.17, can now be substituted into Eq. 6.18 to 
obtain the residual 

dN 
RN ( ' ^ = A — - [p( t ) - /3( t ) ]N( t ) - X Xj C.( t i )exp[-X.( t - t i ) ] Z ^jh(ti) 

j=i L 

f̂-(t')N(t') exp[-Xj(t-t ' )] dV (6.19) 

The weighting functions Vk(t), k = 1 K, can be used in the fol
lowing weighted-residual method to determine the unknown constants in the 
vectors Ak: 
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X 
-i-t-i 

Vj.(t)Ri^(t) dt = 0, r = 1 K. (6.20) 

Equation 6.20 is an example of the method of undetermined pa rame te r s . 
Once the pa ramete r s in the Ak are determined, the calculation can be 
repeated over the next time step, with N(ti+,) now serving as the vector A ,̂. 

C Piecewise Polynomials as Trial Solutions 

The approximate solution to the multimode kinetics equations is a 
piecewise polynomial if, for each time step considered, the trial solution 
is expressed as a Kth-degree polynomial." The coefficients of the polyno
mials are constant over a time step, but differ from one time step to the 
next, hence the name piecewise polynomials 

The best known examples of piecewise polynomials are spline 
functions ' of degree M, which are defined as Mth-degree polynomials 
over each interval, such that the function and its first M - 1 derivatives 
are continuous at each point where the polynomial coefficients change. 
These points are known as joints. The most commonly used spline func
tions are cubic splines, that is, M = 3. 

Spline functions are not used in the ensuing development. Instead, 
piecewise-polynomial functions a re used for which the only continuity 
requirements demanded are for the amplitude functions, not for any of 
their derivat ives. Such a choice has been successful in the past for point 
k ine t ics . ' " ' " It is now extended to multimode kinetics. In the time inter
val ti £ t £ ti+,, let the tr ial solution, Eq, 6 IT, be given by the polynomial 

K 
N(t) = X Ak(t-ti)l^. (6.21) 

Then, 

k=o 

^ = Z kAk(t-t .) l^- ' . (6.22) 
k=i dt 

If the system under analysis is nonlinear, the matr ices p(t) and &j(t) can be 
approximated over the time interval by 

and 

p(t) = p(t i )+ ( t - t i ) (p , + 2P2ti) + P2( t - t i ) ' , (6.23) 

Pj{t) = P j ( t i ) + ( t - t i ) ( P j , + 2Pj , t i )+ Pj2( t - t i ) ' . (6.24) 
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The I X I matrices Pi, P2, ^u, and (3j2 are evaluated by fitting results 

generated from the feedback model to the fornns given by Eqs. 6.23 and 6.24. 

The feedback occurs through the matrix operators D, A, and F'-, which, for 

nonlinear systems, are functions of the neutron flux. Therefore, the matrix 

elements of p(t) and ^j(t), as defined by Eqs. 3.29 and 3.30, become func

tionals of the neutron flux. Eqs. 6.21-6.24 can now be substituted into the 

weighted-residual criterion, Eq. 6.20. The result is 

/-'i+i K C 
° =j I V j{ t ) j [kA( t - t i ) ' ^ - ' -p ( t i ) ( t - t i ) ' ^ - (p,+2p2ti)( t - t i ) '^+ '-p^(t- t i ) '^+^]Akdt 

• • 

J dCil 
Vr(t)[p{ti) + (pi+2p2ti)( t- t i )+Pz(t- t i )2]A„- X -JJ^^ dt. ( 6 . 2 5 ) 

J = 

Equation 6.25 yields IK simultaneous algebraic equations, from 
which the elements of each of the Aĵ , k = 1 K, can be found. The 

weighting functions, Vi.(t), must be specified before the solution can be ob
tained. Section D below considers three possibilities: collocation weighting, 
subdomain weighting, and Galerkin weighting. 

D. Choices of Weighting Functions 

Before the choices of weighting functions are considered individually, 
the I-functions, which appear in each type, are defined by 

/-ti+i 

Ij,m(^ti) = J exp[-Xj( t i+ , -T)]TI" dT, (6.26) 

where 

Ati = ti+, - tj. 

Two useful properties of the I functions are 

exp[-X.t] = 1 - Xjlj o(t), (6.27) 

a n d 

Ij,m(t) = ^ [ t ' ^ - m l j „ , . ^ ( t ) ] , m ^ l . (6.28) 

1. Collocation Weighting 

The residual Rj^(t) is allowed to vanish at the K points tj., 

, K, all within the time interval. The weighting functions are the 1- = 1 , 

Dirac delta functions 
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Vr(t) = 6 ( t - t r ) ; r = 1 K. (6.29) 

When Eqs, 6.21-6,24 are substituted into Eq. 6.16, and Eqs, 6,27 and 
6,28 are used, the following is obtained (where At = t - tj): 

dC: r _ 

- ^ = -XjCj(ti)exp[-Xj(At)] + |Pj(t i)[l-XjIj .o(At)] 

+ (Pj,+2Pj2ti)[At-XjIj,,(At)] + ^jluf 

- X.Ij,2(At)j|Ao+ Z |Pj(ti)[(At) ' ' - Xjlj^ki'^^t)! 

+ (Pj,+2^j2ti)r(At)l^+' - Xjl. j^^/At)! 

+ Pj2[(At)'^+^ - Xjlj ,,+2(At)]} Ak- (6.30) 

Equations 6.29 and 6.30 can now be used in the weighted-residual cri terion, 
Eq. 6.25, to derive the algebraic equations from which the Aĵ  can be de
termined. These are 

0 = Z (Ak(Atr) ' ' - ' -rp(ti)(Atr)'^ + (p,+2p2ti)(Atr)'^+' 

+ P2(Atr)'^+'j + Z {pj(ti)[Atr-XjIj,k(Atr)] 

+ (Pj, + 2Fj2ti)r(Atr)'^+' - Xjl. k+,(Atr)l + Pj2r(At,)'^+' 

- V j , k + 2 ( ^ ' r ) ] } ] A k - fp(t,)+ (P. + 2P2ti) At, 

+ p2(Atr)' - Z {^j(ti)[l -XjIj,o(Atr)l 
j=i I. 

+ (Pj, + 2Pj2ti)[Atr-XjIj , (Atr)]+ Fj2[{Atr)' 

- XjIj, ,(Atr)] |j Ao - X XjCj(ti)[l -Xjlj „(Atr)], (6.31) 
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w h e r e 

At^ = -=^ = tj. - t i , r = 1 K. (6.32) 

The cho ice of co l loca t ion po in t s given by Eq . 6.32 l ends i t s e l f 
v e r y wel l to t i m e - s t e p halving p r o c e d u r e s , which c o n t r o l the e r r o r a c c u m u 
la t ion to e n s u r e a s t ab le so lu t ion . One such p r o c e d u r e is d e s c r i b e d in 
Appendix B. When the v e c t o r s Aj^ a r e d e t e r m i n e d u s i n g Eq . 6 . 3 1 , the va lues 
XjCj(ti+i) can be d e t e r m i n e d d i r e c t l y f r o m E q . 6.12 by subs t i t u t i ng the va lues 
N(ti+[), dN/dt(tj.).j), p(ti^-j), and ^{t^.^.^} j u s t ob ta ined . The c a l c u l a t i o n can now 
be r e p e a t e d for the next t i m e s t e p . 

2. Subdomain Weight ing 

The subdomain me thod was f i r s t u s e d for point k i n e t i c s by 
B r i t t a n and Kaganove . The weight ing funct ions a r e the uni t s t ep funct ions 

Vj.(t) = U(t) - U ( t - t r ) , r = 1 K, (6.33) 

w h e r e each tj. is given by Eq . 6 .32. The s u b d o m a i n s a r e t h e r e f o r e the whole 
t i m e i n t e rva l , the h a l f - i n t e r v a l , the q u a r t e r - i n t e r v a l , e t c . , un t i l K i n t e r v a l s 
have been chosen . As with the co l loca t ion me thod , the t i m e - s t e p ha lv ing 
p r o c e d u r e d e s c r i b e d in Appendix B can e a s i l y be u s e d for t h i s cho ice of 
s u b d o m a i n s . 

F o r the r t h subdomain , the l i m i t s of i n t e g r a t i o n in E q . 6.25 b e 
c o m e the poin ts tj and tj . . F o r each of the K r e s u l t i n g e q u a t i o n s . 

-tr 

(6.34) J - 5 ^ dt = Cj(t,) - Cj(ti). 

Equa t ions 6.13 and 6.30 can be combined to obta in 

Cj(tr) = Cj(ti) exp[-XjAtr] + [Pj(tJIj.„(Atr) + (Pj, +20 .^tj) Ij,,(At^) + Pj,I-.^(At^)] A„ 

K 
+ I [?j(ti)Ij,k(Atr) + (Fji +2?j2ti) Ij,k+i(Atr) + ^j2lj,k+2(Atr)] A^, (6.35) 

which, in tu rn , can be subs t i t u t ed b a c k into E q . 6.34. When the r e s u l t is 
subs t i tu t ed into E q . 6.24, t o g e t h e r with E q s . 6 .21 -6 .24 and 6 .33 , the following 
is obtained: 
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Z (A(At, 
k=i L 

j^ p(ti)(Atr)'^+' (p, + 2P2ti)(Atr)l^+^ p2(Atr)^+' 

k + 1 k + 2 k + 3 

J r 

It 

Pj(ti)Ij,k(Atr) + Oj ,+2Pj2 t i ) I j ,k+ . (Atr )+ ? j2 l j , k+2(At jWj^ 

^ r 

j = l L 

']) 
(Pi+2P2ti)(Atj.)^ P2(Atr)n 

p(ti)Atj. + 2 + — I — J 

(ti)Ij,o(Atr)+ ( /3j j+2^j , t i ) I j , , (Atr)+ Pj2lj,2(Atr) }• 
Z XjCj(ti)Ij,o(Atr), r = 1 K. (6.36) 

Equation 6.36 represents IK simultaneous equations, which can 
be solved to determine the elements of each vector Ak. The values of 
Cj(ti+[) can be found using Eq. 6.12, as was outlined for collocation weighting 
in Section D.l above. 

3. Galerkin Weighting 
• 

For the Galerkin method, the weighting functions are the trial 
functions; that is . 

Vr(t) = ( t - t i ) ^ r = 1 K. (6.37) 

Consequently, each weighting function is continuous over the entire time 
interval. Fur the rmore , t e rms of the form 

Jj,r(Ati) = r 
i+i dC; 

( t - t . ) ^ - 3 ^ d t (6.38) 

appear in the weighted-residual cr i ter ion, Eq. 6.25. These integrals can be 
evaluated with the aid of a recursion formula, which will be derived using 
part ial integration. 
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To begin the derivation, observe that 

Jj „(Ati) = Cj(ti+,) - Cj(ti). 

Equation 6.38 can be integrated by parts to obtain 

/,ti+i 
Jj, ,(Ati) = (Ati)'-Cj(ti+.) - r / (t - ti)^-'Cj(t) dt. 

(6.39) 

(6.40) 

If Eq. 6.13 is used to eliminate Cj(t) in the integrand, and then Eq. 6.38 is 
used, Eq. 6.40 becomes 

J. ,(Ati) = (Ati)'^Cj(ti+,) - f (t - t j )^- ' Pj(t)N(t) dt + - Jj ,r-i(Atj). 

(6.41) 

When Eqs. 6.21 and 6.24 are used, the following recursion formula can be 
obtained from Eq. 6.41: 

Jj.r(Ati) = (AtJ^^CjUi+i) - — I 
>j(t.)(Ati)'^+r (g-j, + 2g-j,ti)(Ati)'^+'-+' ^ Pj^(Ati)''+'-^ 

iTTT '*' k + r + l k + r + 2 

^r^i.-'"'')' (6,42) 

The weighted-residual method is now applied by substituting 
Eqs. 6,21-6,24 and 6.37 into Eq, 6,25 to obtain 

K 

0 = Z 
k=l 

Ak(Atir P(ti)(Ati)l< 

p(ti)(Ati)-- (Pi+2Piti)(Atir 

(p.+Zp.tiKAti)" 
k + r + 2 

Pzl^tir 

PAC^hf 
Ao + I Jj,r(Ati), r = 1, (6.43) 

where the J- ^.(Atj) are determined from the recursion formula, Eq. 6.42. 
The recursion relationship must be used for each value of r to obtain the 
equations necessary to solve for the Aĵ  explicitly. This is not difficult to 
do when using a digital computer. Indeed, recursion formulas are ideally 
suited for digital computation. The t ime-step halving procedure can still be 
used in conjunction with the Galerkin equations, that is, Eqs. 6.43 and 6.42, 
but it is not intrinsically connected with the choice of weighting functions, 
as with collocation and subdomain weighting. 
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C H A P T E R VII 

S P A C E - T I M E I T E R A T I O N USING THE METHOD 
OF U N D E T E R M I N E D FUNCTIONS 

A. D e s c r i p t i o n of the Method 

In C h a p t e r s III, IV, and V, the me thod of u n d e t e r m i n e d functions was 
u?ed to p e r f o r m spa t i a l i n t e g r a t i o n s in d e r i v a t i o n s of the m u l t i m o d e k ine t i c s 
e q u a t i o n s . Then , in C h a p t e r VI, the me thod of u n d e t e r m i n e d p a r a m e t e r s was 
u s e d to i n t e g r a t e the m u l t i m o d e k i n e t i c s e q u a t i o n s , thus comple t i ng the so lu 
t ion to the s p a c e - t i m e p r o b l e m . In th i s c h a p t e r , an i t e r a t i v e me thod , ' ^ which 
u s e s the m e t h o d of u n d e t e r m i n e d funct ions , will be appl ied to p e r f o r m both 
spa t i a l and t e m p o r a l i n t e g r a t i o n s . The m e t h o d , d e s c r i b e d in de ta i l in C h a p 
t e r II, y i e ld s so lu t i ons that a r e independen t of the in i t i a l c h o i c e s of t r i a l 
func t ions . A c c u r a c y of the s o l u t i o n s thus depends only upon the n u m b e r of 
t r i a l func t ions c h o s e n . 

The t e c h n i q u e of s p a c e - t i m e i t e r a t i o n beg ins by applying the me thod 
of we igh ted r e s i d u a l s to E q s . 3.1 and 3.2 to obtain the m u l t i m o d e k ine t i c s 
equa t ions ( s ee C h a p t e r III). T h e s e a r e then solved for the a m p l i t u d e func
t ions , p r e s u m a b l y by us ing one of the m e t h o d s d i s c u s s e d in C h a p t e r VI. 
The a m p l i t u d e funct ions then s e r v e as t r i a l functions in a s e m i d i r e c t me thod 
to de te rnn ine new va lue s for the t i m e - d e p e n d e n t shape func t ions . 

S ince the a m p l i t u d e funct ions a r e d e t e r m i n e d in C h a p t e r III, only the 
m e t h o d of r e c a l c u l a t i n g the shape funct ions is out l ined in th i s c h a p t e r . 
A o n e - e n e r g y g roup mode l is u s e d for s i m p l i c i t y . The p r e c u r s o r equa t ions 
can be f o r m a l l y i n t e g r a t e d wi th r e s p e c t to the t i m e v a r i a b l e to obta in 

rij(x,t) = Tij(x,to) exp [ -Xj ( t - t o ) ] + jSj j F T ( x , t ' ) 0 ( x , t ' ) exp[-Xj(t - t ' ) ] d t ' . 

(7.1) 

E q u a t i o n 7.1 can then be s u b s t i t u t e d into Eq . 3 .1 , which b e c o m e s 

- l % : i l = h • D(x,t)7 - A(x,t) + (1 - p) Xor"'^(x,t)l $(x,t) 
V 5t L P J 

J r 
+ z r|j(x,to)exp[-Xj(t-t„)l + Pj f F'^(x,t ')«(x,t ')exp[-Xj{t-f)ldt'. (7.2) 

To p e r f o r m the t e m p o r a l w e i g h t e d - r e s i d u a l m e t h o d , the fol lowing weigh t ing 
funct ions a r e i n t roduced : 

T( t ) = [ T , ( t ) . . . T i ( t ) ] . (7.3) 
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The w e i g h t e d - r e s i d u a l m e t h o d can now be app l i ed in the u s u a l m a n n e r to 

E q . 7.2 to obta in 

tf ^ t f r -. 

f TT( t ) i ^ (x) ^ dt = / T T ( t ) K - D V - A + ( l - P ) X p F T j ^ ( x ) N ( t ) 

J to " ^^ -^to l*-

+ Z P: / F T ( x , t ' ) V ( x ) N ( t ' ) e x p [ - X j ( t - t ' ) ] d t ' U t 

j=i ^- ' to J 

J / f 
+ Z / TT( t )T) j (x , to )exp[ -Xj ( t - t „ ) ] dt . (7.4) 

j = ' - t̂o 

Equa t ion 7.4 is u s e d to so lve for the shape funct ions ip{, i = 1, . . . , I, 
a p p e a r i n g in the m a t r i x f{x). F o r a o n e - e n e r g y g roup a p p r o x i m a t i o n , Eq , 7.4 
can be r e w r i t t e n as 

t)V - A(x, t ) + (1 - /3) XpF ' ^ (x , t ) jN ' ^ ( t ) •X."-^iTi^-['°'-

+ Z /3j / F T ( x , t ' ) N T ( t ' ) e x p [ - X j ( t - f ) ] d t ' > dt ^ T ( x ) 

j=i J to J 

J 
+ Y. TT(t)r)j(x,to) exp[ -Xj ( t - to ) ] dt . (7 .5 ) 

F u r t h e r m o r e , Eq . 7.5 can be w r i t t e n in the m a t r i x s h o r t h a n d f o r m 

d r , , dV^ , , 
- [ E ( X ) ^ ( X ) _ + M(x)^1 ' (x) + P ( x ) = 0, (7 .6 ) 

w h e r e the I x I m a t r i c e s E(x) and M(x) and the I - d i m e n s i o n a l c o l u m n v e c t o r 
P (x ) a r e defined by 

tf 
E(x) = / TT( t )D(x , t )NT( t ) dt. (x) =f 

-'to 

(7 .7 ) 
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M(x) = / % ^ , (1 - P ) X p F ^ ( x , t ) - A(x, t ) 
d l T 
— N 1 

V d t j 

(t) 

and 

+ Z ^ i / F T ( x , t ' ) N T ( t ' ) e x p [ - X j ( t - t ' ) l d f l 

J /.tf 
P ( x ) = Z I j (x . to) / TT( t ) exp [ -Xj ( t - t o ) ] dt . 

dt . (7.8) 

(7.9) 

Equa t ion 7.6 is s i m i l a r to the m a t r i x fo rmula t ion of s t e a d y - s t a t e 
m u l t i g r o u p diffusion t h e o r y . One vi tal d i f f e r ence , howeve r , i s that in m u l t i -
g roup diffusion t h e o r y , E(x) is a d iagona l m a t r i x , w h e r e a s in Eq . 7.6, it is 
a full m a t r i x . N e v e r t h e l e s s , Eq . 7.6 can be solved as a s y s t e m of i n h o m o -
g e n e o u s , s e c o n d - o r d e r , o r d i n a r y d i f fe ren t i a l equa t ions to obta in the new 
va lue s of Vi(x). T h e s e new v a l u e s can , in t u r n , s e r v e as t r i a l functions to 
r e c a l c u l a t e the a m p l i t u d e funct ions Ni( t) , u s ing the method d e s c r i b e d in 
C h a p t e r III. The i t e r a t i o n is c a r r i e d out unti l a conve rged solut ion is 
ob ta ined . 

B. A S i m p l e I l l u s t r a t i o n 

C o n s i d e r the o n e - d i m e n s i o n a l b a r e r e a c t o r shown in F i g . 3. Suppose 
it is in i t i a l ly c r i t i c a l , but then a u n i f o r m s tep d e c r e a s e in the a b s o r p t i o n 

,^,(x) = COs( |^) 

Fig. 3 

Initial State of a One-
dimensional Bare Reactor 

113-1896 



74 

c r o s s s e c t i o n t akes p l a c e . N e g l e c t the d e l a y e d n e u t r o n s for s i m p l i c i t y , 
so tha t E q s . 3.1 and 3.12 b e c o m e 

^ S 0 ( x , t ) __ p y » ( x ^ ^ ( F T . A ) 0 ( x , t ) , (7 .10) 
V St Sx^ 

and 

0 ( - a , t ) = 0(a, t) = 0. (7.11) 

Since the r e a c t o r is in i t i a l ly c r i t i c a l , the in i t i a l condi t ion for the flux is 

0(x,O) = 0o(x) = cos ^ . (7 .12) 

It i s wel l known that , for a u n i f o r m p e r t u r b a t i o n , the flux s h a p e will 
not change . N e v e r t h e l e s s , a o n e - m o d e approx inaa t ion is c h o s e n , in which 
the t r i a l function is not the in i t ia l d i s t r i b u t i o n 0o(x). I n s t e a d , c h o o s e 

0 = V(x)N(t), (7.13) 

•where 

^ (x ) = 1 - ^ 2 - (^-14) 

The t r i a l function s a t i s f i e s the b o u n d a r y cond i t i ons , so tha t a b o u n d a r y 
r e s i d u a l need not be f o r m e d . The object of t h i s e x a m p l e i s to show tha t 
the i t e r a t i v e s c h e m e s e e k s and finds the exac t so lu t ion , even though an i n 
c o r r e c t shape function is u s e d as the in i t i a l g u e s s . 

The ampl i t ude function N(t) can be found by so lv ing the m u l t i m o d e 
k ine t i c s e q u a t i o n s . The in i t ia l condi t ion N(to) is found by u s i n g E q . 3 .20. 
Choose subdoma in weight ing , W(x) = 1, so tha t E q . 3.20 b e c o m e s 

x:hs-('-^) N(to) dx = 0, (7.15) 

f r o m which 

N(to) = | . (7.16) 
7T 

The g e n e r a t i o n t i m e and the r e a c t i v i t y a r e found f r o m E q s . 3.28 and 3 .29, 
so that 
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and 

-x.T-^"^"4-#-
If Eq. 7.18 is divided by Eq. 7.17, the result is 

3D^ 

(7.17) 

i-<^'-^-'i)-

^ + l i ( F T . A ) . (7.18) 

(7.19) 

Equation 3.32 can now be easily solved for the amplitude function N(t). The 
solution is 

N(t) = N(to) exp[(p/A)(t-to)] = - exp[v(FT. A-3D/a ' ) ( t - t o ) ] . 

The first guess for the flux is thus 

0(x,t) = | ( l - ^ j exp[v(FT-A-3D/a^) ( t - to ) ] . 

( 7 .20 ) 

(7.21) 

The improved solution for ^(x) will now be sought, using Eq. 7.20 as a trial 
function in Eq. 7.6. * 

Since there are no delayed neutrons, P(x) = 0, and Eq. 7.6 is homo
geneous. An eigenvalue problem consequently must be formed to solve 
Eq. 7.6. To evaluate E(x) and M(x) (both constant for this example), the 
weighting function T(t) = 1 will be chosen. This choice corresponds to 
subdomain weighting. Therefore, E(x) and M(x) become 

E(x) = ^ ^ ^ { e x p [ ( p / A ) ( t f - t o ) ] - l } , 
P / A 

(7 .22 ) 

and 

M(x) = N(to) 
p / A 

{exp[(p/A)(tf-to)]- 1} - i{exp[(p/A)( t f - to)]- l} j , 

( 7 .23 ) 
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so that Eq . 7.6 b e c o m e s 

d^Tp 

dx2 

p/A 
vD * ( x ) (7 .24 ) 

Equa t ion 7,24 is a h o m o g e n e o u s equa t ion , wh ich r e c u r s in e a c h s p a t i a l 
i t e r a t i o n . To obta in a n o n t r i v i a l so lu t ion , i n t r o d u c e a p a r a m e t e r X in the 
following m a n n e r : 

dx' 

p/A 
vD 

- X'̂  •P(x) = 0. (7,25) 

The p a r a m e t e r X is eva lua t ed for each i t e r a t i o n by u s i n g the b o u n d a r y con
d i t i ons . As the i t e r a t i v e schenne p r o g r e s s e s , e a c h s u c c e e d i n g va lue of X 
should be s m a l l e r than the p r e c e d i n g v a l u e . If X̂  v a n i s h e s , t hen the con 
v e r g e d so lu t ion has been ob ta ined . E q u a t i o n 7,2 5, then , a m o u n t s to an 
"e igenva lue p r o b l e m " for each i t e r a t i o n . 

Equa t ion 7,19 can be s u b s t i t u t e d into Eq , 7,2 5 to ob ta in 

g . ( ^ - X ^ ) , ( x ) = 0, (7,26) 

By r e q u i r i n g the b o u n d a r y condi t ion , Eq . 7 ,11 , to be s a t i s f i e d , one can show 
that the so lu t ion is 

fix) 
_ 7TX 
C COS ——, 

2 a 

•n'/4 

(7 ,27) 

(7 .28) 

a n d 

0(x, t ) = C COS — exp[v(FT - A - 3D/a^) t ] . (7 .29 ) 

F i n a l l y , t h e c o n s t a n t C i s e v a l u a t e d b y a p p l y i n g t h e w e i g h t e d - r e s i d u a l m e t h o d 
t o t h e i n i t i a l r e s i d u a l : 

/

a 
7Tx 7TX TTx ^ 

COS --— - L, cos —— dx 
2a 2a (7 .30 ) 

f r o m which C 



77 

function 
Fur ther improvement can now be made for N(t) by using the tr ial 

, , , TTX 
W\X) = C O S — . 

2a 
(7.31) 

The solution proceeds along the same lines as outlined in connection with 
Eqs. 7.17-7.21. This t ime, however. 

.A..(pT.,.0), (7.32) 

and 

N(t) = exp i^'-B) ( t - to, 

0(x,t) = COS —— exp :(.T...0) ( t - t o ) 

(7.33) 

(7.34) 

Equation 7.34 is the well-known exact solution to the problem. If this fact 
were not known, however, another calculation of the shape function would 
again yield the solution given by Eq. 7.27. The parameter X̂  would now 
vanish, indicating that the converged solution has been found. 

C. Possible Applications of Space-Time Iteration 

Space-time iteration is ideally suited for use with temporally 
discontinuous tr ial functions in the analysis of nonlinear t ransients . In the 
quasistatic method, for example, space-t ime iteration could be used to 
improve the shape function over the ith time step, instead of using Eq. 5.24. 
Since there is only one mode, however, the shape function would be charac
ter is t ic of an instant in time somewhere within the ith time interval. This 
fact suggests that space- t ime iteration with only one shape function is 
inferior to using Eq. 5.24. However, if more than one tinne-independent 
mode were used, as in temporally discontinuous synthesis methods, then 
space-t ime iteration would be an extremely valuable tool because it el imi
nates the need to choose a "good" set of tr ial functions. 

Another possible application could be to use space-t ime iteration in 
the full three-dimensional , time-dependent problem. Trial functions could 
initially be chosen in the three space dimensions in order to calculate the 
amplitude functions. Then, the annplitude functions, together with the tr ial 
functions in two of the space dimensions, could be used to improve the shape 
functions in the remaining space dimension. The procedure would then be 



continued to improve the shape functions in each remaining space dimension. 
Then, the second iteration would begin by calculating improved amplitude 
functions using the improved shape functions as trial functions, and would 
continue by recalculating the shape functions for each dimension in turn. 
The procedure would become, in effect, a ser ies of one-dimensional calcula
tions performed to solve a four-dimensional problem. When a nonlinear 
transient is analyzed, the temporally discontinuous tr ial function technique 
could also be incorporated. 

Multichannel-synthesis methods could also benefit from space-t ime 
iteration. In the nodal method, for example, shape functions character is t ic 
of an instant of time within the time interval would be used instead of the 
initial shapes. Each node would presumably be described by a shape func
tion character is t ic of a time different from that of the other shapes. 
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CHAPTER VIII 

NUMERICAL RESULTS 

A, Introduction 

In the previous chapters the approximate methods of solving the 
space-t ime problem were described as weighted-residual methods, dif
fering only in the manner of choosing t r ia l functions. Methods of choosing 
weighting functions were not compared, except for occasional implications 
that the variational method and the Galerkin method seemed to be superior 
to other choices. In this chapter, various nnethods of choosing weighting 
functions a re compared numerically. The results are primari ly intended 
to indicate the degree of sensitivity of the weighted-residual solutions to 
the choice of weighting functions. 

A computer program, entitled WEIRD, was written to perform the 
calculations. It integrates the one-energy-group diffusion equation. Trial 
functions and weighting functions for the space dependence are inputs. The 
multimode kinetics equations a re then formed and integrated using the 
method of undetermined pa ramete r s Piecewise polynomials are used as 
the t r ia l functions for the time integration. Second-degree polynomials and 
subdomain weighting are used to obtain the results that will be reported. 
The t ime-integrat ion routine also has an automatic t ime-step selector, 
which is described in Appendix B. 

Comparisons are made for two of the approximate methods These 
are continuous synthesis and multichannel synthesis. Nodal methods are 
treated as special cases of multichannel synthesis. In the studies of con
tinuous synthesis, the Galerkin method is compared with two choices of 
subdonnain weighting and with a set of weighting functions that satisfy the 
boundary conditions but a re otherwise chosen somewhat arbi t rar i ly . No 
more than two tr ial functions are considered for any problem. Studies of 
the multichannel synthesis method indicate the degree of improvement in 
the approximation when the number of synthesis regions is increased. In 
addition, par t ia l -cur ren t weighting and surface-cancellation weighting of 
the interface conditions a re compared for the nodal method. 

Only one reactor is analyzed in this study. It is a 240-cm slab 
reactor, which, for convenience, is t reated in a symmetric manner. That 
is, the only t ransients studied result from perturbations symmetric about 
the center of the reactor so that only half the reactor is considered. Hence, 
a ze ro -cu r ren t boundary condition is imposed at the origin. The paramete rs 
for cri t icali ty a re listed in Table I, and the initial flux shape is shown in 
Fig. 4. 



TABLE I, P a r a m e t e r s for Cr i t ica l i ty 

P a r a m e t e r 
Region 1 
(0-15 cm) 

Region 2 
(15-60 cm) 

Region 3 
(60-120 cm) 

D, cm 

vSf, c m " ' 

^ a ' ^ ' " " ' 

V, c m / s e c 

1,69531 

0.0194962 

0.0194962 

10^ 

1.69531 

0.0194962 

0.0194962 

l O ' 

1.69531 

0.0194962 

0.0183343 

l o ' 

^ • ^ 

1 I I I I 

^ * ^ ^ ^ ^ = = ^ ^ 
^ ^ \ ^ \ \ 

INITIAL SHAPE 

FINAL SHAPE OF TRANSIENT 1 

FINAL SHAPE OF TRANSIENT INITIATED 
IN THE REGION FROM 15-30 Cm 

\ 
\ 

1 

v\ 

Sx\ 
^̂  

1 

— 

\̂ 

\ 

DISTANCE FROM CENTER OF REACTOR, err 

Fig. 4. Shape Functions Used in Analysis of Transients 

Two t r a n s i e n t s a r e ana lyzed . Both a r e i n i t i a t ed by a r a m p change 
in the f i s s ion c r o s s sec t ion in Region 1 (0-15 c m f r o m the o r ig in ) for 

0.1 s e c , which is then he ld 

TABLE II. Region 1 F i s s ion C r o s s Sections 
at End of Ramp 

F i s s i o n C r o s s 
Section T r a n s i e n t 1 T rans i en t 2 

cons t an t for the r e m a i n d e r of 
the t r a n s i e n t (up to t = 1 s e c ) . 
The f inal v a l u e s of the f i s s ion 
c r o s s s ec t i on in Region 1 a r e 
given in T a b l e II. One g roup 
of d e l a y e d n e u t r o n s i s u sed , 
wi th /3 = 0.0064, and X = 
0.08 s e c " ' . When the t r a n 
s i e n t s w e r e a n a l y z e d wi th the 

"exac t " f i n i t e -d i f f e r ence c o m p u t e r code WIGLE,^ it was found tha t T r a n 
s ien t 1 w a s a s u b p r o m p t c r i t i c a l b u r s t , whi le T r a n s i e n t 2 w a s s u p e r p r o m p t 
c r i t i c a l . The WIGLE so lu t ions a l s o y i e lded the final s h a p e s shown in 
F i g . 4. 

vZi 0.0201461 0.0202962 
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To compare various choices of weighting functions, good sets of 
trial functions are used. The initial and final shapes for Transients 1 and 
2 are two such sets. To study multichannel synthesis, though, a poor set 
of trial functions is chosen. One possibility is to choose the initial shape 
along with the final shape from a transient initiated in some other region 
of the reactor. One such choice is shown in Fig. 4. To obtain this shape, 
the fission cross section of the 15-30-cm region was increased in a ramp 
until t = 0.1 sec, while the absorption cross section in the first region 
was also being increased. The transient was then continued until t = 1 sec 
and then terminated. This set of shape functions is called the "poor" set of 
trial functions. This set is also used as weighting functions in the 
continuous-synthesis comparison. 

A proper comparison of the space-time approximate methods 
should consider both amplitude and shape changes. One way of doing this 
is to form the following amplitude function at time t: 

f W(x, t)0(x, t) dx 

P(t) =— , (8.1) 

f W(x, O)0(x, 0) dx 
• ' X 

where ^(x, t) is given by Eq. 3.3, and P(t) is a scalar amplitude function 
characteristic of the entire reactor. For purposes of comparison with 
point kinetics, the choice 

W(x, t) = 0(x, 0) (8.2) 
% 

is made for each case treated. The shape functions at any time t can then 
be determined by dividing 0(x, t) by P(t): 

f ( x . t ) - ^ . (8.3) 

Another useful parameter is the reciprocal period, given by 

Equation 8.4 can be integrated to obtain 

P(t) = P(0) expr/"'a(t ') dt'l. (8.5) 

For the transients being analyzed in this report, the reciprocal period ap
proaches an asymptotic value after the ramp change in fission cross section 
has terminated. This value can be determined by using Eq. 8.5 to obtain 



82 

, P ( t 2 ) 
In —7 r, 

p ( t l ) 
t 2 > t i , (8.6) 

where ti and t2 are times after which the reciprocal period has become 
asymptotic. These times can be found without difficulty by noting when the 
shape function has approached its asymptotic distribution. 

The asymptotic reciprocal periods for each approximate method 
can be compared to see whether the e r ror is bounded. This is the case 
only if the reciprocal period is (almost) identical to the exact value. If the 
e r ror is bounded, then the ratio of the approximate value of P(t2) to the 
exact value gives an e r ror measure . 

B. Continuous Synthesis 

The purpose of these studies is to compare different weighted-
residual cr i ter ia in an attempt to discern the effect of weighting-function 
choice on accuracy. Both transients are analyzed to see if the condition of 
prompt criticality has any effect on the approximate methods. In the anal
ysis of Transient 1, the initial shape and the final shape for Transient 1 
are chosen as tr ial functions. Since these "bracket" the true solution, 
accurate results are expected, and indeed are obtained, as is shown in 
Table III. 

TABLE HI. Transient 1 Results at t = 1 sec, Using 
Initial and Final Shapes as Tr ia l Functions 

Point 
Exact Galerkin Subdonnain 1 Subdomain Z "Poor" Kinetics 

Reciprocal period, sec" 

Amplitude function 

Amplitude for mode 1 

Amplitude for mode Z 

The title Subdomain 1 refers to the choice of subdomains as unit 
step-functions defined as unity in the regions 0-15 and 15-120 cm from 
the origin. Subdomain 2 uses O-6O and 60-120 cm as the subdomains. 
"Poor" weighting refers to the choice of the initial shape and the shape 
function characterist ic of a transient initiated in the 15-30-cm region of 
the reactor (see Fig. 4). The fact that the amplitude of mode 2 is dominant 
for all cases (except point kinetics) indicates that each approximation has 
also selected the proper shape at t = 1 sec. This fact is also true for 
intermediate t imes, although the results are not tabulated here . 

The poor results of point kinetics re-emphasize the purpose of 
space-time approximations. Although the shape change (or "flux tilt") 
shown in Fig. 4 does not appear to be substantial, it has a profound effect 

1.91 

02.90 

-
_ 

1.91 

102.85 

0.0056 

102.84 

1.90 

102.59 

0.0259 

102.56 

1.92 

103.90 

-0.254 

104.15 

1.91 

102.20 

0.0324 

102.17 

0.49 

10.87 

10.87 

-
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on the reciprocal period and hence the amplitude function, as Table III 
shows. Transient 1. or one s imilar to it, could very well be initiated in an 
actual reac tor . It would seem from point kinetics that the transient is not 
too severe . Actually, it is nearly a prompt cri t ical burst (p = 97.5 cents). 
Point kinetics calls it an 86.0-cent burst . A slightly higher increase in 
vZf would have caused a superprompt cri t ical burst, which point kinetics 
could not have predicted. 

Table IV and Fig. 5 contain the resul ts from choosing the "poor" 
shapes as tr ial functions. When these functions are also used as the weighting 

TABLE IV. Transient 1 Results at t = 1 sec, 
Using "Poor" Trial Functions 

Transient Point 
Exact Weighting Galerkin Kinetics 

Reciprocal period, s ec" ' 1.91 

Amplitude function 102.90 

Amplitude for mode 1 

Amplitude for mode 2 

1.89 

100.34 

216.44 

316.78 

0.52 

11.60 

9.51 

2.08 

0.49 

10.87 

10.87 

_ 

1.2 

OS 

0 6 

0 4 

0.2 -

1 1 

EXACT 

1 1 

1 1 1 1 1 

/WEIGHTING FUNCTIONS ARE SHAPES OF 
TRANSIENT 1 

\ % 

\ r ~ ~ " -,.!|[^^^'\^^ ,GALERKIN WEIGHTING 

1 1 1 1 1 

-

-

-

-

-

DISTANCE FROM CENTER OF REACTOR, cm 

113-1893 

Fig. 5. Transient 1 Shape Functions at t = 1 sec, Using "Poor" Trial Functions 
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funct ions , that i s , when G a l e r k i n weigh t ing is u sed , v e r y l i t t l e i m p r o v e m e n t 
i s m a d e ove r point k i n e t i c s . If, on the o the r hand, the t r u e s h a p e s of T r a n 
s ien t 1 happen to be c h o s e n as the we igh t ing funct ions , the r e c i p r o c a l p e r i o d 
and the ampl i t ude function c o m e v e r y c l o s e to the e x a c t v a l u e s . H o w e v e r , 
the r e s u l t i n g shape function i s i n c o r r e c t , a s can be s e e n in F i g . 5. T h e s e 
r e s u l t s can be expla ined in t e r m s of the v a r i a t i o n a l m e t h o d d e s c r i b e d in 
C h a p t e r III. 

The flux and the adjoint flux both a p p e a r in e a c h t e r m of the func
t ional given by Eq. 3.45. The functional i s s t a t i o n a r y , so tha t i t s f i r s t v a r i 
a t ion with r e s p e c t to e i t he r 0 or 0* v a n i s h e s . In e i t h e r c a s e , a p p r o x i m a t e 
so lu t ions (such as those given in E q s . 3.3 and 3.46, w h e r e f^{x) and Tp^(x) 
a r e t r i a l funct ions) for both 0 and 0* m u s t be u s e d to d e t e r m i n e the va lue 
of the funct ions . F u r t h e r m o r e , the a c c u r a c y of the va lue of the funct ional 
depends upon how wel l each se t of t r i a l funct ions i s c h o s e n . T h i s a r g u m e n t 
can be extended to any w e i g h t e d - r e s i d u a l me thod b e c a u s e the v a r i a t i o n a l 
me thod is r e a l l y two w e i g h t e d - r e s i d u a l m e t h o d s , in which the t r i a l funct ions 
for the r e a l p r o b l e m a r e the weight ing funct ions for the adjoint p r o b l e m , 
and v ice v e r s a . 

Tak ing the f i r s t v a r i a t i o n a l so p r o v i d e s a m e a n s of d e t e r m i n i n g the 
u n d e t e r m i n e d ampl i tude functions for each p r o b l e m . If e i t h e r se t of t r i a l 
functions is "good," both s e t s of a m p l i t u d e funct ions wi l l be d e t e r m i n e d 
fa i r ly a c c u r a t e l y . If both s e t s of t r i a l funct ions a r e good, the a m p l i t u d e 
funct ions a r e d e t e r m i n e d even m o r e a c c u r a t e l y . If both s e t s a r e " p o o r , " 
n e i t h e r se t of a m p l i t u d e functions is d e t e r m i n e d a c c u r a t e l y . On the o t h e r 
hand, the shape of the t r u e flux is poor if poor flux t r i a l funct ions a r e 
chosen , no m a t t e r how good the weight ing funct ions a r e . One c o n c l u s i o n 
tha t can be dra%vn f rom the above r e s u l t s and d i s c u s s i o n i s that , if a good 
se t of t r i a l functions is chosen for the flux, G a l e r k i n ^veighting a lways g ives 
an a c c u r a t e so lu t ion for the flux and for the r e c i p r o c a l p e r i o d . In th i s s e n s e , 
G a l e r k i n weight ing i s good s t r a t e g y . 

When the in i t i a l and final s h a p e s of T r a n s i e n t 2 w e r e c h o s e n a s t r i a l 
funct ions for T r a n s i e n t 2, r e s u l t s s i m i l a r to those obta ined in the a n a l y s i s 
of T r a n s i e n t 1 w e r e obta ined . T h e s e a r e shown in T a b l e V. No t i ce tha t 
G a l e r k i n weight ing is n e a r l y exac t . Tab le VI con ta ins the r e s u l t s when the 
shape functions f rom T r a n s i e n t 1 a r e c h o s e n as t r i a l funct ions to a n a l y z e 

TABtE V. Transient 2 Results at t ' 1 sec, Using Initial and Final Shapes as Trial Functions 

Reciprocal period, sec' 

Amplitude function 

Amplitude for mode 1 

Amplitude for mode 2 

Exact 

29,51 

3,94 X lO'^ 

-
-

Galerkin 

29,51 

3.93 X lo '^ 

3.86 X 10* 

3.93 X 10l2 

Subdomain 1 

29.71 

4.72 X lo '^ 

-3.08 X l o ' " 

4.75 X 10l2 

Subdomain 2 

29.44 

3.70 X lo '^ 

5.56 X l o ' 

3.69 X lO'^ 

"Poor" 

29.52 

3.92 X 10'2 

-7.69 X 10* 

3.93 X 10l2 

Point 
Kinetics 

8.84 

4.87 X Iff" 

4.87 X Iff" 

-
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TABt£ VI. Transient 2 Results al t • 1 sec. Using Transient 1 Shapes as Trial Functions 

Subdomain 1 Subdomain 2 
Point 

Kinetics 

Reciprocal period, sec~^ 

Amplitude function 

Amplitude for mode 1 

Amplitude for mode 2 

29,51 

3,94 X lo'^ 

-
-

29.48 

3.82 X 10'2 

-9.56 X lO" 

4.78X 10'2 

29.82 

5,24 X 10'2 

-1.35 X 10l2 

6.59 X 10̂ ^ 

29.36 

3.43 X 10'2 

-824 X l o " 

4.25 X W'^ 

28.99 

tii X W^ 

-5.45 I l o " 

3 .»x lo"^ 

8.84 

4.87 X 10< 

4.871 llfi 

-

Transient 2. The Galerkin method is clearly superior to the other methods 
in this case. In addition, "poor" weighting does not do as well as before. 
Note that amplitude 1 is negative and has a substantial magnitude in all 
cases . However, when the solution is formed for each approximation using 
Eq. 3.3, and when Eq. 8.3 is used, each approximation gives nearly the cor
rect flux shape. Figure 6 shows the total flux at t = 1 sec for each approxi
mation. Subdomain 1 weighting overest imates the total flux, although each 
gives nearly the cor rec t flux shape. Because of this, it may be concluded 
that, when the t r ia l functions become "less good," a good choice of weight
ing functions becomes more important in obtaining an accurate solution. 
Fur thermore , the best possible choice of subdomains is usually not clear, 
indicating that Galerkin weighting is sounder strategy than subdomain 
weighting. 

30 45 60 75 90 
DISTANCE FROM CENTER Of REACTOR, cm 

113-1892 

Fig. 6. Transient 2 Flux Distiibuuon at t = 1 sec, Using 
Transient 1 Shapes as Trial Functions 
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T A B L E VII. I n t e r f a c e L o c a t i o n s for 
Mul t i channe l A p p r o x i m a t i o n s 

C. Mul t i channe l S y n t h e s i s 

1. Nodal A p p r o x i m a t i o n s 

S tud ies of the nodal a p p r o x i m a t i o n s a r e u n d e r t a k e n h e r e for 
two r e a s o n s : to d e t e r m i n e the d e g r e e of i m p r o v e m e n t a s the n u m b e r of 

nodes is i n c r e a s e d , and to c o m 
p a r e p a r t i a l - c u r r e n t and s u r f a c e -
c a n c e l l a t i o n weigh t ing of the 
i n t e r f a c e cond i t i ons . G a l e r k i n 
weigh t ing is app l ied to the 
equa t ion r e s i d u a l s . T a b l e VIX 
l i s t s the i n t e r f a c e s c h o s e n for 
t he v a r i o u s nodal a p p r o x i m a 
t i o n s . T a b l e s VIII and IX c o m 
p a r e the r e c i p r o c a l p e r i o d s and 
a m p l i t u d e funct ions for T r a n 
s i e n t s 1 and 2, r e s p e c t i v e l y . 

P a r t i a l - c u r r e n t weight ing does m u c h b e t t e r in a l l c a s e s . Indeed, f ive -node 
p a r t i a l - c u r r e n t weight ing is m o r e a c c u r a t e than t e n - n o d e s u r f a c e -
c a n c e l l a t i o n weigh t ing . F i g u r e 7 shows the shape funct ions of T r a n s i e n t 2 
a t t = 1 sec for the t e n - n o d e p a r t i a l - c u r r e n t and s u r f a c e - c a n c e l l a t i o n 
w e i g h t i n g s . The p a r t i a l - c u r r e n t shape is m u c h c l o s e r to the t r u e shape 
than is the s u r f a c e - c a n c e l l a t i o n shape . The j u m p d i s c o n t i n u i t i e s a p p e a r at 
the nodal i n t e r f a c e s a s a n a t u r a l c o n s e q u e n c e of the u s e of nodal m e t h o d s . 
A s i m i l a r se t of c u r v e s can a l s o be d r a w n for T r a n s i e n t 1. 

T A B L E VIII. T r a n s i e n t 1 R e s u l t s a t t = 1 s e c for Nodal A p p r o x i m a t i o n s 

N u m b e r 
Channel 

2 
3 
4 
i 
8 

10 

of 
Is I n t e r f a c e L o c a t i o n s , c m f rom O r i g i n 

7 

15 
15 
15 
15 
15 
15 22 

30 
30 60 
30 60 90 
30 45 60 75 90 105 
30 45 60 75 90 105 

E x a c t 
P o i n t k i n e t i c s 
Two nodes 
F i v e nodes 
E igh t nodes 
Ten nodes 

R e c i p r o c a l P e r i o d , s e c " ' 

Su r f ace 
C a n c e l l a t i o n 

1.91 
0.49 
0.52 
0.56 
0.60 
0.64 

P a r t i a l 
C u r r e n t 

1.91 
0.49 
0.60 
0.8C 
1.C4 
1.58 

Ampl 

Su r f ace 
C a n c e l l a t i 

102.90 
10.87 
11.54 
12.77 
14.23 
15.43 

i tude 

on 

F u n c t i o n 

P a r t i a l 
C u r r e n t 

102.90 
10.87 
14.17 
21.37 
32.99 
70.06 

T A B L E IX. T r a n s i e n t Z R e s u l t s a t t = 1 sec for Nodal A p p r o x i m a t i o n s 

E x a c t 
Po in t k i n e t i c s 
Two nodes 
F i v e nodes 
Eight nodes 
Ten nodes 

R e c i p r o c a l 

S u r f a c e 
C a n c e l l a t i o n 

29.51 
S.84 
9.83 

11.28 
12.67 
13.78 

P e r i o d , s e c " ' 

P a r t i a l 
C u r r e n t 

29.51 
8.84 

12.99 
17.87 
21.55 
26.70 

Ampl i 

S u r f a c e 
C a n c e l l a t i o n 

3.94 X lO'" 
4.87 X 10* 
1.13 X lO' 
3.93 X 10* 
1.29 X 10 ' 
3.42 X lO' 

tude F u n c t i o n 

P a r t i a l 
C u r r e n t 

3.94 X 10'^ 
4.87 X 10* 
1.71 X l o ' 
1.23 X 10* 
3.19 X l o ' 
3.17 X 1 0 " 
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DISTANCE FROM CENTER OF REACTOR, cm 

113-1890 

Fig. 7. Transient 2 Shape Functions at t = 1 sec for 10 Nodes 

S u r f a c e - c a n c e l l a t i o n weight ing is a v e r y poor cho ice for nodal 
m e t h o d s , w h e r e a s p a r t i a l - c u r r e n t we igh t ing does qui te we l l . Howeve r , 
when a good se t of t r i a l funct ions is used , nodal m e t h o d s in g e n e r a l s e e m 
to be i n f e r i o r to the s y n t h e s i s a p p r o a c h . One p o s s i b l e exp lana t ion for the 
r e l a t i v e s u c c e s s of p a r t i a l - c u r r e n t weight ing is that , in diffusion t h e o r y , 
the n e u t r o n l e akage f rom one r eg ion to a n o t h e r is given by the p a r t i a l c u r 
r en t at the r eg ion i n t e r f a c e . On p u r e l y m a t h e m a t i c a l g rounds , however , 
t h e r e s e e m s to be no c l e a r r e a s o n for p r e f e r r i n g one type of weight ing ove r 
the o t h e r . One i m p o r t a n t c o n c l u s i o n can be d r a w n f rom t h e s e s t u d i e s : The 
m a n n e r of we igh t ing the i n t e r f a c e r e s i d u a l s i s c r u c i a l to the s u c c e s s of 
m u l t i c h a n n e l s y n t h e s i s . The e n t i r e a r e a r e q u i r e s much m o r e study for 
c l a r i f i c a t i o n . 

2. Two M o d e s in E a c h Channe l 

The m a i n p u r p o s e of the t w o - m o d e m u l t i c h a n n e l s y n t h e s i s 
s t u d i e s i s to d e t e r m i n e how wel l m u l t i c h a n n e l s y n t h e s i s can do when a 
" p o o r " cho i ce of t r i a l func t ions i s m a d e . The t r i a l funct ions a r e ( l ) the 
in i t i a l s h a p e , and (2) the final shape for the t r a n s i e n t in i t i a t ed in the r eg ion 
15-30 c m f r o m the o r i g i n ( s ee F i g . 4). G a l e r k i n we igh t ing i s appl ied to the 
d i f f e r e n t i a l equa t ion and p a r t i a l - c u r r e n t we igh t ing i s u s e d on the i n t e r f a c e 
r e s i d u a l s . T a b l e s X and XI l i s t the r e c i p r o c a l p e r i o d s and a m p l i t u d e func
t i ons for each t r a n s i e n t . T a b l e VII g ives the i n t e r f a c e l o c a t i o n s . Note 
tha t s i n g l e - c h a n n e l s y n t h e s i s i s l i t t l e b e t t e r than poin t k i n e t i c s . 



TABLE X. Transient 1 Results at t = 1 sec 
for Multichannel Synthesis 

R e c i p r o c a l 
P e r i o d , 

s e c " 

1.91 
0.52 
0.93 
1.24 
1.24 

A m p l i t u d e 
F u n c t i o n 

102.90 
11.60 
26.88 
44.15 
44.23 

Exact 
One channel 
Two channels 
Three channels 
Four channels 

TABLE XI. Transient 2 Results at t 
for Multichannel Synthesis 

R e c i p r o c a l 
P e r i o d , 

s e c " 

29.51 
9.92 

20.51 
24.56 
24.58 

Ampl i tude 
F u n c t i o n 

3.94 X lO'^ 
1.24 X 10^ 
1.26 X 10 ' 
4 .64 X 10'° 
4.72 X 10'° 

Exact 
One channel 
Two channels 
Three channels 
Four channels 

There is virtually no improvement for either transient when 
the number of channels is increased from three to four. This is because 
the fourth channel was added where it was not really needed. If three chan
nels had been placed in the inner 30 cm, a four-channel approximation would 
probably have done much better. In pract ice, however, it seems advisable 
to choose channels in a symmetric manner in order to be able to handle 
nonlinear t ransients which can cause drast ic shape changes. 

The greatest improvement is shown when the number of chan
nels is increased from one to two. This fact is even more apparent when 
the shape functions, shown in Fig. 8, a re considered. The shape function 
for one channel is completely incorrect and is close to point kinetics. It 
is much better for two channels, and better still for three channels. The 
shape function for four channels is identical to that for three channels. 
The discontinuities a r i se naturally at the interfaces between channels due 
to the nature of the approximation. Figure 8 is for Transient 2, but a s imi
lar result holds for Transient 1. 
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Fig. 8. Transient 2 Shape Functions at t = 1 sec for Multichannel Synthesis 

The above d i s c u s s i o n i n d i c a t e s that m u l t i c h a n n e l s y n t h e s i s is 
c a p a b l e of y ie ld ing a r e a s o n a b l e a p p r o x i m a t i o n even with a poor cho ice of 
t r i a l func t ions . S o m e c a r e should be taken , however , in choos ing the 
channe l i n t e r f a c e s . F u r t h e r m o r e , c a r e should be t aken in the choice of 
the me thod of we igh t ing the i n t e r f a c e s . 
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CHAPTER IX 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 

A. C o n c l u s i o n s 

The p o i n t - r e a c t o r m o d e l , m o d a l - e x p a n s i o n m e t h o d s , s y n t h e s i s 
m e t h o d s , v a r i a t i o n a l m e t h o d s , m u l t i c h a n n e l - s y n t h e s i s m e t h o d s , t e m p o r a l l y 
d i s con t i nuous m e t h o d s , and q u a s i s t a t i c m e t h o d s of so lv ing the t i m e -
dependen t neu t ron -d i f fu s ion equa t ions can a l l be thought of a s w e i g h t e d -
r e s i d u a l m e t h o d s . They differ only in the m a n n e r in wh ich t h e i r t r i a l 
funct ions a r e chosen . The m u l t i m o d e k i n e t i c s equa t ions can be u s e d for 
the t i m e i n t e g r a t i o n in each m e t h o d . F o r s e l f - ad jo in t s y s t e m s , the v a r i a 
t ional me thod and the G a l e r k i n me thod a r e i d e n t i c a l . F o r n o n - s e l f - a d j o i n t 
s y s t e m s , the v a r i a t i o n a l me thod is equ iva len t to so lv ing both the r e a l p r o b 
l e m and the adjoint p r o b l e m s i m u l t a n e o u s l y u s ing a w e i g h t e d - r e s i d u a l 
me thod for each . The t r i a l funct ions for one a r e the weigh t ing funct ions for 
the o t h e r . 

T h e r e does not s e e m to be a need for seek ing v a r i a t i o n a l p r i n c i p l e s 
for n o n l i n e a r s y s t e m s . They a r e difficult to find, and do not y ie ld m u c h 
m o r e i n f o r m a t i o n than the G a l e r k i n m e t h o d . T h e r e f o r e , a w e i g h t e d - r e s i d u a l 
p r o c e d u r e should be adopted f r o m the o u t s e t . 

When spa t i a l ly d i s con t inuous t r i a l - f u n c t i o n s c h e m e s a r e adop ted , the 
i n t e r f a c e condi t ions m u s t be t r e a t e d by a w e i g h t e d - r e s i d u a l m e t h o d . P a r t i a l -
c u r r e n t weight ing s e e m s to be a b e t t e r cho ice than s u r f a c e - c a n c e l l a t i o n 
weigh t ing in th i s r e s p e c t . Many o t h e r p o s s i b i l i t i e s could have been i n v e s t i 
gated, h o w e v e r . F o r t h e s e , the weigh t ing funct ions u s e d at the i n t e r f a c e s 
should be r e l a t e d to the funct ions u s e d to we igh t the d i f f e r en t i a l e q u a t i o n s . 
A l i n e a r combina t i on of weight ing funct ions for e a c h channe l , e v a l u a t e d at 
the i n t e r f a c e s , ^vould be a n a t u r a l c h o i c e . 

T e m p o r a l l y d i s c o n t i n u o u s t r i a l - f u n c t i o n m e t h o d s a r e su i t ab l e for 
ana lyz ing non l inea r t r a n s i e n t s . If the t r i a l funct ions a r e p r e c a l c u l a t e d , the 
"new in i t ia l r e s i d u a l s " m u s t be we igh ted w h e n e v e r new t r i a l funct ions a r e 
i n t r o d u c e d a n d / o r old t r i a l funct ions a r e r e m o v e d . A good cho ice of w e i g h t 
ing funct ions i s the se t of we igh t ing funct ions to be u s e d t h r o u g h o u t the 
ensu ing t i m e i n t e r v a l . When t r i a l funct ions a r e r e c a l c u l a t e d , a s in a q u a s i -
s t a t i c a p p r o x i m a t i o n , i t e r a t i o n s c h e m e s for s h a p e - f u n c t i o n r e c a l c u l a t i o n 
a r e g e n e r a l l y u s e d . In t h e s e c a s e s , the "new in i t i a l r e s i d u a l s " v a n i s h 
iden t i ca l ly , s ince the c o r r e c t shape function for the beg inn ing of the ensu ing 
t i m e i n t e r v a l h a s been found. 

The shape function for the f i r s t p a s s t h r o u g h a t i m e i n t e r v a l in an 
i t e r a t i v e q u a s i s t a t i c s c h e m e can be i m p r o v e d if a noda l m e t h o d is u s e d in 
s t e a d of a s s u m i n g a c o n s t a n t s h a p e . T h i s wi l l enab le the t i m e i n t e r v a l to 
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be extended, so that fewer shape recalculations will be needed to analyze a 
t ransient One such nodal method has been applied in this manner. 

The multimode kinetics equations can be integrated using the method 
of undetermined pa rame te r s . The finite-difference t i ine-step limitation is 
overcome when this method is used. Piecewise polynomial functions are 
good choices for t r ia l functions. 

Space-time iteration using the method of undetermined functions 
provides a means of overcoming the obstacle of having to guess at tr ial 
functions, because it finds a solution that is independent of the initial choice 
of t r ia l functions. It can be a powerful tool in multidimensional studies. 

For continuous synthesis, Galerkin weighting will always give accu
rate solutions when a good set of tr ial functions is chosen. Par t ia l -cur ren t 
weighting was superior to surface-cancellation weighting of interface con
ditions when multichannel synthesis was used. Multichannel synthesis is 
an improvement over single-channel synthesis when the choice of tr ial func
tions is poor. 

In conclusion, weighted-residual methods can be highly successful 
when applied to problems of space-dependent reactor dynamics. Some of 
these methods are intrinsically better than others . For example, the 
discontinuous-trial-function methods offer greater flexibility than 
continuous-trial-function methods. Fur thermore , the traditional point-
reactor model has the least flexibility, since only one trial function is used 
throughout. In each of the methods, however, the degree of success depends 
strongly on the ability to choose good tr ial fi^nctions. 

B. Recommendations for Fur ther Study 

The proper role of interface conditions in multichannel synthesis 
needs to be much better understood A sound method of weighting the in
terface residuals is needed. 

The space- t ime iteration scheme should be pursued, because it is 
potentially very useful for analyzing higher dimensional systems. Its use 
with temporally discontinuous-trial-function methods also appears to be 
promising. 

Finally, a topic that was judged to be outside the scope of this 
report should be studied. This is the area of finding e r ro r bounds for 
trial-function methods. When precalculated t r ia l functions are used, there 
is no way of knowing how accurate the solution is unless it is compared with 
the exact solution. If this must be done too often, the utility of the approxima
tion method would be destroyed. 
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APPENDIX A 

Linear Dependence 

Consider a multichannel synthesis approximation in which two modes 
are chosen for each synthesis region. Although the t r ia l functions may be 
selected so that they are linearly independent over the entire reactor , they 
could be linearly dependent, or "almost" linearly dependent, within a 
channel. Suppose that the tr ial functions within a channel are given by 
^j(x) and ip2,{x). To determine the degree of linear dependence between 
^i(x) and Tp^ix), the normalized Gram determinant of their inner products 
is formed. The procedure is outlined here . 

The inner products are given by 

Gij = j ^i(x)^j(x) dx, i, j = 1, 2. (A.l) 

The Gram matrix G is given by 

G = 
J21 G22 Gzi G2 

Now, define a diagonal matr ix D by 

(A. 2) 

D = . -1 /2 (A.S) 

The normalized Gram matrix is given by 

D G D 
GizCGjiG^ -1/2 

'^ni'^ifizzl -1/2 1 
{A.4) 

Finally, the normalized Gram determinant is 

' - ' iz '- ' i i 
det(G') = 1 - - ^ . (A.5) 

In principle, ^i(x) and •ip2.(^) are linearly dependent if and only if 
det(G') = 0. Numerically, however, they may be "almost" linearly depend
ent if det(G') is very small . Therefore', a cr i ter ion for defining "almost" 
linear dependence must be defined. One such cri ter ion" ' is 

det{G') < (A.6) 
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where e is a small positive number chosen beforehand. If Inequality A.6 
is satisfied, two possibili t ies exist. Either one of the trial functions should 
be discarded, or the locations of the interfaces should be changed. 

The same procedure must be repeated for the weighting functions 
within the channel. They must be linearly independent as well, if a solu
tion is to be obtained. If Galerkin weighting is used, however, a separate 
comparison for the weighting functions is not necessary. 

Linear dependence can also occur in the integration of the multimode 
kinetics equations. The system of equations given by Eq. 6.36 can be 
written in the matr ix shorthand form 

LA = R, (A.7) 

where A and R are IK-dimensional column vectors and L is an 
IK X IK matr ix . If 

det(L) = 0, (A.8) 

the matr ix L is singular and the system is linearly dependent. 
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APPENDIX B 

Selection of Time-step Size 

When the method of undetermined parameters is used to solve the 
multimode kinetics equations, methods that regulate the size of the time 
intervals can be incorporated. Such methods allow large time steps to be 
taken when the transient is proceeding slowly, and automatically shorten 
the time step when more rapid changes occur. They also ensure a stable 
solution for every time step taken. One such method is the t ime-s tep 
halving technique," which is described here . 

Consider the time step 

At; (B.l) 

where the solution to the multimode kinetics equations is known at tj, and 
desired at ti^.^j. Two independent solutions to the multimode kinetics equa
tions are now found. The first of these integrates over the entire time 
step, yielding a solution at t = tj^^^. The second solution is for only half 
the step, yielding a solution at 

. , Ati 

Each solution is found by determining a different set of pa rame te r s . The 
half-step solution is expressed as a different polynomial for each mode. 
Suppose each of these polynomials is extrapolated to obtain values at 
t = tj^j. These values will not be the same as those found by integration 
over the entire time step, but they should be close, 
of these values determines the next step. 

The degree of closeness 

To compare the two sets of values, form the following e r r o r norm: 

~li/2 K 

2 N^.ext - NL(ti+,) 
k=i 

k=i 

(B.2) 

where K is the number of modes, Nĵ  ^^^ is the value of the kth amplitude 
function calculated for the half-step and extrapolated to the end of the step, 
and Nĵ .(tĵ , ) is the value of the kth amplitude function from the full-step 
calculation. The e r ro r jnorm is now compared with a preselected tolerable 
e r ro r Sj. If e < ei, then the amplitude functions Nj ,̂(tj .̂j), k = 1, ..., K, are 
acceptable as the solutions, and the multimode kinetics equations can be 
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integrated over the next time step. If, in addition, e < CEI , where C is a 
preselected parameter less than unity, the size of the next time step is 
doubled. A good value for C is 0.1. 

If, on the other hand, e > ej, the values Nj^(tj.).j) are not acceptable, 
and the time step is halved. Two independent solutions to the multimode 
kinetics equations are again found, this time for the t imes t = tĵ  -I- Atj/2, 
and t = tj -I- Atj /4. Note that the first of these has already been made for 
the original comparison, so that it does not have to be repeated. The solu
tions are again compared as described above. If acceptable values for 
Nj^(tj+ Atj/Z) a re found, the solution at t = tj.).j will again be attempted in the 
same manner . This time, however, t = tj -I- t\tyZ is the lower end of the 
time step, so that independent solutions are formed for t = tj + (3/4)Ati, 
and t = tj.^1. 

If the values Ni^(tj-I- Atj/2) are not acceptable, the time step is 
halved again and the calculation is repeated for the quar te r - s tep . The 
method continues until an acceptable solution has been found for t = tj.).,-
The procedure then begins anew to determine the Nî (tj+2)> etc., until the 
end of the t ransient is reached. 
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